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NATTIONAT. ADVISORY COMMITTEE FOR AFERONAUTICS

TECHNICAL NOTE NO. 1430

A THEORETICAL STUDY OF THE DYNAMIC PROPERTIES
OF HELICOPTER-BLADE SYSTEMS

By H., Reissner and M. Morduchow
SUMMARY

The work herein presented on & theoreticel study of the dynamic
properties of li;i:ting rotors covers:

1. The derivations of the angles of atteck of the inflow, of the
blade-position varigbles — pitch, flepping, and lagging — and
of the serodynamic and insrtla forces acting on hinged heli-
copter (lifting-rotor) blades in the hovering and in the
traveling states

2, The development and solution of the equilibrium conditions of
the blade system In the hovering and in the traveling states

3. The development of the frequency, stebllity, and damping proper—
ties of the hinged, sufficlently rigld rotor blades during
hovering and traveling

The method of solution of small oscillations @bout a state of
simultanecus rotation and traveling has in this paper been carried through
for only small speed ratlos,

This method wes applied to four cases of diverse constraint conditions
between the three angles of pitch, flapping, and lagging. The results are
significant In regard to restoring force and to mode; frequency, phase,
damping, and empllitude ratios. The number of modes end of independent
emplitudes is, of course, equal to the degree of freedom. Fach mode in
hovering corresponds to one frequency, but in traveling each mode consists
of three frequencies of fixed amplitude ratios and fixed phase, dlfferences
but wlth only one free amplitude. However, the amplitude ratios of the
two additlional frequencies to the origlinal amplitude are, in all cases which
have been computed numerically, smeller than the speed ratio. The results
for the four cases treated show marked advantages obtainable by appropriate
kinematlic constraints-between the three angles in regard to safety against
resonance, to damping, and to automatic adjustment.
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INTRODUCTION

The problems of blade-engle control, steblllty of motion, resonance,
and flutter of helicopter-blade systems have not as yet been fully treated.
This fact seems to be substantleted by the presence of disturbances in
present—dsy rotor operations which have not been fully explained. No
camplete theory encompassing the effects of different methods of articula—~
tion and angle control appears to be known., These problems are closely
interrelaeted through their dependence on the dynamic eguations of blade
motlion,

Previous publications have dealt mainly with the performence of the
helicopter or with the stebllity of the equilibrium of steady flight of
the complete helicopter system with very special agsumptions in regard
to the blade and hub connections.

It is believed that the problem of smooth operation of a helicopter
must be attacked in a more general way, and for this reason must be
divided Into st leest two parte; namely,

(1) The free oscillation of the blade systezﬁ sbout the different steady
states of flight

(2) The forced oscillations of this system caused by the reection of the
fuselage, by irregularities of torque, by gusta, by transition to
enother state of flight, by flying in a curve, and so on.

Problem (1) again falls into several parts, - The first part deals
with the concluslions which cen be drawn from the results of the theory
of small osollletions ebout a steady state of motion spplied to a system
of suffilclently rigld bledes hinged to a driving hub., The rigidity of
blades 1is sufficlent to give the real behavior of the blade system if the
neturel frequencles of a blade, treated as rigld, are small in comperison
with the lowest nabtural frequency of elastic vibrations of = blade.

The second part, not treated in thls peper, would have to deal with
the superposition and interference of elestic vibrations, or what 1s the
same, of elastic waves of the blades on or with the rigld-blede oscille--
tions in those cases when the blades are appreclably flexible., The
enslysis of this phenomenon would require the integration of the equa—
tions of deflectlon — and twist — vibrations of the blades, under the
action of the local serodynamic snd inertia (including centrifugel)
forces and under the effect of the boundary conditions at the hinge and
at the tip.

The flutter problem, meaning the determination of the criticel
veloclty at which damping coefficlents become negative, so that self-
oxcited oscillations arise, has not been covered in this paper for two
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resgons. The first reason is that the critical velocity at the low average
reduced ratio YQE' of the blade will, in general, not be reached, especially

since the blade 1s stiffened by the restoring centrifugel force., The
second reason is that all other sources of instebility and resonance should
be removed Tirst before going into this difficult problem more deeply than
previous authors, who have simply applied results of stralght-moving alr-
foils. It is not improbable that sometimes unsteble oscillations appearing
in stationary flow, with no phase differences between bending and twisting,
have been mistaken for flutter.

This investigation was conducted at the Polytechnic Instltute of Brooklyn
under the sponsorship and with the financilal essistance of the National -
Advisory Commlittee for Aeronautics.

SYMBOLS

Xy¥,2 right-hand Cartesiasn coordinates, fixed to hub of blade
(see fig. 1)

X1s¥1521 right-hand Cartesien coordinstes, fixed to blade system
(see fig. 3)

Q angular veloclty of hub

velocity of flight (called traveling) in any direction, for’
example, forward, sideweys, or backward

<A

b angle between plane of rotation and velocity vector ¥
v =0at angular position of blade center line (¥ = O when x—axis
coincides with projection of ¥ on plane of rotation)
t time, seconds
t‘b maximm thickness of blade cross sectlon
=4

T
t E-d-'—

a¥
6 angle between plane of rotation and zero—lift line of chord

(celled pitch angle), positive from y to z

o angle of attack
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B angle between plane of rotation and center line of blade
(palled flapping angle), positive uwpward, that is,
from x to =z

¢ engle between x—exis and projection of center lins of

blade on plems of rotation (called lagging angle),
positive backward, that 1s, from y to x

o5 Bos &g values of 6, B, { in steady state of flight

ec, Bc, Qc values of 6, B, & if steedy state of flight 1is hovering
state (subscript ¢ = Constant)

6,8, ¢ devistions of 8, B, { from values in steady state of
equilibrium, that is, from 65, B,, ¢ o
e distance of blade~hinge center from axis of rotation
(see fig. 1)
r distance of point of center line of blade from hings center
(see Tig. 1)
R ~ tip radius of blade
n= %
-
Me =R
v vector of resultant velocity ¥ + T in steady flight
vx,vy,vz rectengular components of v
o real part of complex oscillation frequency p
r inmer redlus of blade length (see fig. 1)
i
o= L; also a geometric constraint constant in case C, OSCILLATIONS OF
o BLADE SYSTEM IN HOVERING, and IN LOW-SPEFED TRAVELING
e = :-2% 5 ‘that 1s, speed ratio
B = %
r
81 = §l
S4 imaginary part of complex oscillation frequency p

k defined by equation (13), k=~ 1
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P T&, I&

- R

I = f Ar? ar
Ty
R

S=/ Arar
]

P

o

%complex

- qcomplex

chord of croses section of blade
chord of innermost cross section (r = ry)
unit vector of zero-lift line of cross sectlion of blede

component- of relative inflow veloclty in plene of cross
gection of blade

component of vncl in direction of 'é'l

camponent of vncl normal to 'é'l
circulation around cross section of blade

distance ratio between center of gravity eand serodynamic
center of cross section of blade (see fig. b}

moment components about x;-, ¥yq—s 2;-8xes, respectlvely
(see fig. 3)

moment of momentum vector of blade
area of blade cross section
moments of inertle of cross section of blade

volume integrals of moments of inertia (see equation (61))

density of alr

density of blade material (average density in case of
framed structure)

complex circular frequency of oscillation

complex frequency ratilo (Re,n + 1 Si,n\>

/
real frequency, cycles per second k £ Si,n\"
2n '



6 NACA TN No. 1430

logarithmic decrement Gﬂ 2.0

log v
Anv1 i,n
B, ¥, D complex amplitudes of oscillation of &, B, &,
respectively, about steady state of flight
Ky Ay U congtents in kinemetic constraint conditions
Ly Lagrange multipller
E=gxn E Q%hci
I 32 (1 + 2o, + 34\
c EH 315 o 1 T ole
I
_ b ( ;B) Pl
315 21 I ]
c,t = - B
2 1+ 2116 . _
Xy ,k k3 values of integrals given by equation (21)
e acceleration due to gravity

AFRODYNAMIC AND CENTRIFUGAL FORCES AND MOMENTS

IN STEADY HORIZONTAL FLIGHT

The serodynamic foroces ecting on a blade when it is rotating in a
conical path and elso moving horlzontelly will be determined basically
by meens of the Kutta—Joukowskl 1ift theorem. This principle requires
thet the components of the total relative inflow velocity V and also
of the circulation I' first be obtained.

A right-hand Cartesian coordinate system will be used, in which the
z—axls coincides with the axis of rotation, or axis of the cone, and 1is
directed upward, though not necessarily exactly vertical., The axias of
the conical path of a blade is supposed to coincide with the z-exls,
which, from an accurate standpoint, implies thet the commnection of the
hub with the driving shaft 1s such thet the blade system tilte with the v
hub. The x—exis, moreover, is in the direction of the arm (of length e)
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of the hub. (See fig. 1.) Instead of using the direction of flight,
which is assumed as horizontal In this paper, as the axis of reference,

it is equivalent and more convenlent for thé kinematic analysis to con—
sider the longitudinal axis of a blade as flxed and the line of action

of the velocity vector as rotating. The.veloclty vector will, in general,
not lie In the plame of rotation .xy bdDut will meke an angle y with 1it.
(See fig. 2.) Thus, while the direction of travel, that is, of ¥, is
agssumed to be horizontal (or nearly horizontal), the plane of rotation xy
will be tilted at an angle 7 +to the direction of flight (travel), so
that the normal =z of this plane may be tilted forward in the direction
of flight and possibly also sideways. It 1s posslble in thlis way %o
treat the motion of all blades by analyzing only one as a sample.

As seen from figure 1, a concentric arrangement of the flapping and
lagging hinges at distance e from the exis of rotation 1s assumed. Such
an arrangement appears +to the authors to have the advantage of transmitting
the large centrifugal force on one (spherical) bearing surface with lower
(unit) pressure than in two smaller surfaces of the sleeve bearings. More—
over, it is shown in this analysis that the actual value of the small

distance between the hinges has little influence on the stablility
characteristics of the rotor system,

Relative Veloclty Components

Let v, Vys Vg be the components of the relative (travel) velocity
of flight, that is, relative to the x, ¥y, z coordinate system, which is
for this purely geometric discussion consldered fixed in space. Moreover,

let vhx’ Qy vhz be the components of the relative rotational veloclty

of & blade. Then the components of. the resultant inflow velocity (excluding
the induced velocity) will ‘be

Ve =73 + Tox T

= 1
V& Vst Yoy > (1)
Vz =v_ + sz J

As 1n ordinary wing theory, the induced flow across a helicopter blade
will be teken into account by the changed (induced) direction of the

total inflow; whereas the induced change of magnitude of the veloclity

is negligible. _ _ Ce e mmmamem— w07
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The following notation is used in figures 1 and 2:

Q. anguler velocity of hub due to torque of-engine

r distance along blade measured outward from hinge point H

r centroid exis of blade

B flapping angle, that 1s, angle between line r and xy-plane

't lagging angle, that is, angle between x—axis and projection of T
on xy-plane (It may be noted thaet the positive direction of ¢
1s opposite to that of 9.)

¥ ‘angle perlodically traversed by veloocity vector, that i1s, angle

between x-axls and projJection of relative velocity of flight +v
on xy-plene (in accordance with the kinemetic inversion)

4 angle between relative velocity of flight ¥ and plane of rotetion,
thet 1s, xy—-plane

From figure 2, the components of Vv are:

-,
V. =~V cos y cos ¥
Vy=-—vocosysin¥ (2)
v, =~V gin v

J

From flgure 1 and the fact that the rotational wveloclity vQ ie perpend.icular
to—the line r, and to the z—axle, the components of ?ﬂ are:

—_———

Vop = — & cos B sin ¢
vny=-n(a+rcosBcos§)& (3)
Vaz = 0

-

In practical cases B, {, and ¥ will be small quantities, in the
gens® that powers of- these quantltles above the second can be neglestied.
Moreover, when 1t 1s considered that the appreclable contribution to lift
and torgue will be made only by the blade farthsr out from ths hinge, it
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is permissible to treat e/r also as a smell quantity for all values

of r contributing to the forces. That is,
B 1, t K1, <1, XK1 (1)
where |
n=2

Thus, by adding equations (2) and (3), meking use of equation (4), and
introducling the dimensionless variable

the components of the resultant relative wveloclty, to second powers of
small quantities, are gseen to be:

2
Y
V’x.-=-gr§+u< —;)COE\J

V ==80ril -
¥ +“<

2
1 2 2
ﬁ")““‘““‘a(ﬁ . 2?)

(5)

V, == uy

Lift Conmponents

According to the Kutta—Joukowski theorem the 1ift psr unit length of
a blade 1s glven by the wvector product

L' = pVXT (6)

where is the density of the fluld medium, V 13 the vector of ths
resultent reletive veloclty (see equation (5)), and T is the circula-
tion vector. Tne direction of T coincides with that of the bound vortex
lins representing the blade; that is, the direction of ¥ i3 the same as
that of the vector ¥. The magnitude of the circulation T 1is given by
the condltion of finite veloclity at the tralling edge of ths zero-li~t
chord of a blade. The radisl component, that is, the componentof
the velocity psrallel to the blade axis r, will have no Influsnce
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on the valus of ', because the circulation integrel following this
radial component, which 1s the same above and below the blade, isg zero,
Thus [ itself is determined by the velocity component in the plane
perpendicular to the blade axis; whereas the 1ift (see equation (6)) is
determined by the total veloclty vector (including the radial component).
A well-knovn formula gives the magnitude of I' by

I'a ﬂTCVnClG; - (7)
where
c chord of cross section
Vm veloclty component of V 1in plane perpendicular to r, that is,
1 in plane of cross section of blade
o angle of attack, that 1s, angle between ¥ and T, line of

of zero 1ift of croas section 1

The veloclty component vncl cen be determined as resultant of V, eand

and Vg,, vhere

v camponent of V in plane of blade cross section (at any r) perpen—

7 dilcular to zero-Lift line cq

Vcl componsnt of V in plane of cross section parallel to c4
If 6 denotes the pitch angle (that 1s, the angle between the zero-lift
line of an airfoil section and the plane of rotation), which like B, ¢,
vy, and 1 may be consgildered a first-order small quentity, then, with
the dlrsction cosines of the vectors El and T (see appendix A), the

expressions for Vcl and V., to second-order small quantities, are found

to be:
2 2 2
Vcl=€2r l+u 3.—g 8+ sin ¥ + n
2 2
+ 0
+ u(f — 98) cos’#+u67-9——2——1 (8a)

V, = Qr{e(l +7) + u[(ﬁ + £9) cos ¥ + (8 = BE) sia ¥ — ﬂ} (&)

The angle o can be obtained from the relation
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. a % tan @ = e—— (8)

whereas Vm can be obtained from
1

From equations (8a) end (8b) it can be seen that V, is first order
amall, whereas TV, ~1s finite; it follows from equation (7) therefore

that to second—order small quantities
T = oV, (92)
or, from equation (8b),
I= nelr4o(l + n)- + 1 [(B + t8) cos ¥ + (6 — Bt) sin ¥ -_')"j} (ob)

Therefore, by expanding the vector product of equation (6), using
the velocity components (equation (5)) and the direction cosines of T,
the 1ift components psr untt length of a blade, to sscond orders, are
found to be (see appendix B):

Lx' - prcﬂaraﬂ(l + 1 sin *){9 + {Bcos¥ + 6 glny - 7)]
Ly' = - :rpcﬂzzzu(-y - B cos \lf)l:e + p(cos ¥+ 6 sin ¥ - 75_‘
It = nePr2pd6(1 + 2n) + p[(s + 2t8) cos ¥ + (26 — Bt) ein ¥ — 7]} (102)

+ M |B cos \F+2951n\|f—7]+u2(sinﬂf+§cos?)

Sl

X Ee(sin ¥+ € cos ¥) + B(cos \?—gsin\lf)—-y]}

It will be observed that, as might be expected, L,* eand Ly' are
of a higher (sscond) order smell then L,' (which is first order small).
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Drag Componenta

The drag components per unit length of span of a blade can be de—
termined as follows: Inasmuch as the drag D' will be parallel to the
resultant relative velocity V, 1t follows that

v. V. v
X Z
Dyt = D'F-, Dy' = D'-‘;I, D,* = D'v— (11)

The total drag per unit length can be expressed by the equation

D* = Lz'<ézP + °1) L (12) I

where cp and, ay are the parasite and induced changes of the angle of

attack, respectively. It may be remarked that equation (12), although
not exact, 1s correct to quantities of second order, since, by observing
the second~order emallness of L,' and Ly', the total 1ift to quanti-

ties of second order may be glven only by the z-component Lz'.
From equations (11), (12), and (5) it is seen, by considering Y

and ay as first order emall, that D,' will be a third-order small
quantity., Hence to second orders,

Dz'=0

Ag can be seen from equation (12), it is sufficient, in order to determine
Dt and Dy' to second orders, to consider only the finite terms of

x
\' end V,. Thus, from equation (5),

v ¥’
/ cos ¥ 2
VvV Vx2+Vy2=ﬂr(l+gsin*) 1 4+ (o088 Y

b &4
1L+ usiny

For purposes of investligating stablility it will suffice, in order to
avold needlessly compliceted integrations, to replace the radical factor
in the foregoing expression for V by an average value. Thus, taking -

o~ % a8 the highest expected speed ratio,

~ L ~ L
cos™¥ 5 sin%¥ 5
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_ 2
1t is seen that the maximum of \/1 + <—-L‘°—°‘ﬂ’—-> ~\[1 + 0.11 ~ 1.087

1+ psin V¥

for the highest expected velocity v(¥ = 2/3). Therefore, there can be
written ) ' L

Va0r(l + ¢ sin ¥)k (13)

where % varies from 1 (for hovering, or v = 0) to 1.087 (for high—speed
ratio Y;E = ”e) . Thus, by use of equations (10a), (}1): (12), and (13),

the expressions for the x— and y-components of the drag per unit length,
to second—order esmall terms, are found to be:

-

Dt =_§(ap+q,i)cn2r2dl cos ¥[u(B cos ¥ + 6 sin ¥y — 7) +9]

x

S (1h)
t = _Z -

Dy = k(a.p + _a.i)cnzrep(l + u sin \k)E:.(B cos ¥ + 6 sin ¥ — y) + 9]
For purposes of investigating stability, when the agsumptions or

approximations need not be as accurate as for performance, the induced
sngle of attack @y may be approximated by the average along the radius,

which can be teken from the well-known formula for elliptical wings of
aspect ratio AR in rectilinear flight:

2x
——-—204
14—
G,i=CL= AR: 2 e
t AR n AR AR + 2

Hence, by using equations (8a) and (8b) and supposing AR = 8, the
expresslion for the induced angle, to first orders, becomes

6+;.1.(Bcos\lf+931nﬂf—-7)
l1+unsinty

a'i=

(15)

-



14 NACA TN No. 1L30

When, for simplicity, the case of hovering 1s considered,
1t will be noted from equation (15) that if the bl 35 angle 8 1s assumed
as constant along the blade (see next section), then the induced angle of
attack has implicitly been assumed to be constent., However, because the
chord will be teken as a parabolic function along the blade decreasing
toward the tip (see equation (18)), the drag force per unit length will
elso decrease parabolically. According to the theory of minimum drag of
rotating ailrfolls, the induced angle will Increase slightly near the root
and then decrease, alsoc slightly, toward the tip, according to a functlon

of the form a4 proportional to -Q—EZEL--, where w 1s the axlal com—

2
1+ Qf)
w

ponent of inf.ow velocity, which 1s equel to the induced velocity in
hovering. When the multiplication by the chord 1s comslidered, a more
exact determination of the drag force according to the aforementioned
induced inflow distribution camnot cause much difference from the results
of the assumptions made in this paper, particularly beceause for the blade
treated as a rigid body osclllating ebout its hinge, only the resultant
meoment of drag enters the dynamic equations,

Pitch Angle

The blade angle is determined by the welght which the blade has to
carry by meane of its 1ift force. For this purpose 1t will be sufficient
to conaider only quaentitlies up to first order smsil. Thus, from equa—
tion (10a),

Lx' =0
t _
Ly =0
2
L, = Npcﬂzrg(l + iy 8in ¥)]6 + u(B cos ¥ + 6 sin ¥ - 7)} —20Ar -a-—g-ﬁ (10b)

The last term of equation (10b), where A 1is the area of a cross sectionm,
represents the Inertia force for the case in which, for g % 0, the
flapping angle B, 1n steady fllght varles periodically with V(= Qt),
thatise, with time. The 1deal requirement would be that the 1ift of a
blade element be constent during & cycle. The pitch angle @ would then,
according to equation (10b), have to vary (with V¥) along the circumference
as follows: '
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It 32
2 2% Bo

i P %% (B oos¥—y)
(9r)2 ne(Ll + p ein *)2 lL+psiny

In equation (16) L,', Qr, p, B, end 7 must be considered as
z

constant on the circle at radius r while ¥ is changing from O to 2x.
Equation (16) would require a freely twisting blade, which, of couree,
would be difficult to realize. Therefore, it may henceforth be required

that only the totel force component f L,' d&r be constent (that is, be
4

independent of ¥). Then &, which will be dependent on ¥, can be
determined as follows: Assume

0 =08, + M9 )

where 6, = f(r) and A =gy, B, 7, ¥v) but is independent of .
This means that the blade is designed sufficlently rigid so that s for
chenge of pitch, it can practically be rigidly rotated only about its
raedlel axis.

Iet r; be the radius of the innermost section of the blede, or

the velue of r at which the blade begins to become effective in 1ift. i
The following dimensionless quantities, moreover, in which R is the
tip radius of a blade, will henceforth be used:

e EE% —
by =L
o =L

As an example, it will be assumed that the variation of the blade chord c
with the radius r 1s parabolic. This provides ‘a decrease of the 1ift

to zero at the tip of the blade and represents in a way the decrease of
circulation toward the tip, wilthout making 1t necessary to enter into the
theory of the tralling distorted helical vortex sheet. Thus, it is gupposed
that : :
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o = ci(&.:i /2 (18)

l—Bi

It seems appropriate, moreover, to choose for an example the basic pitch
angle 6, for the hovering state (i = O) as constent (with r). It

ghould be remarked, however, that this assumption, as well as that of
equation (18), is suggested only by wey of an example to fix the ideas

and the order of magnlitude and approximate form of the functions appearing.
Whether these or other exemplifying ressonsble assumptions ere chosen will
have only a negligible influence on the frequencies epd on the stability
conditions,

Put 6 =6,, u =0, and equation (18) into equation (10b), and set

R W
f I‘z' ir = (19)
ry cos y

where W 1s the weight of the helicopter, and n is the number of bledes.
Then by evaelustion of the integral in eguation (19), with the substitution
of equation (10b), the expression obtained for 6,, to first powers of 85
1s found to be

|-
2
Bi=

W 105
¢ oR3 ﬂzci 8nn(2 + 84)

In order to find A9, put equation (17) into equation (10b) and again
require the condition of equstion (19), substituting for W 1in terms of

8. by meens of equation (20). Then the expression for A8, if powers
of s8; higher then the first are neglected, is found to be 323
-p.e[éo(simlr) (21:2 + ueklsinv)+( Bcosy — 7)(]:2 + p.eklsin#):li- %-—IS:— 2
AD = , ks J¢2 (21)
1+ 2ugk, sin¥ + u 2 k siny
where R R
Rff c dr R rc dr _ 1
i T ri 3 2
s Ky = R 5 5 1:3 = R J; dss“c



NACA TN No, 1k30 _ i7

With the assumption (18), the values of kj, kp, end ky, to first

2CiR3
s = (8 + ks)
105

Only the total 1ift force I, has been calculated for the purpose of
determining the blade engle. The other force resultants L., Ly, D,
and D_ follow, by integration, from their unit valuves (equations (10a)
end (14)), end determine, together with L,, the resction of the hub

and the fuselage. They are not needed in this paper, which confines
itself to the blade system.

powers of 84, are:

35
kl=§-l—%si,

=1

Aerodynsmic and Centrifugel Moments

In order to determine the steady—state flapping and lagging angles
Bo and £, end to investigate the stabllity of the helicopter rotor,

i1t is necessery to obtain the moments acting on the blades, The moments
about the following axes must be determined (see fig. 2):

The xy-exis, giving the twiéting moment which in some way must be
held in balance by the pltch—changing mechanlism of the hinge

The y;-exis (perpendicular to the x,-exis, and, like x;, perellel
to the xy-plans), giving a condition for the flapping angle B,

The z—exls, determining the tofque per blade

The zy-exls perellel to 2z and pessing through the hinge point,
giving a condition for the lagging angle §°.

Twisting moment about xXy—exis.— By referring to figures 3 and b, 1%

18 found thet:

R R
Myq = Mo — c:f dr(Il - I.?)GSI2 +I [(zcg - Zac) Lz' cos 8 cos B
ry ’ ry

R
_(zcg_zac><1,xl!+pxl>cosesinﬁ dr — aff :‘VZ B} Ipdr (22e)
i
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where M, , 18 the (aerodynamic) moment sbout the aerodynsmic center and

can be expressed as . -—

R
M = & 22 ar
ac fricMBGQGlc

The denaity of the blade materiasl is o} Il and I? are the principal
moments of lnertie of a blade oross section (Il > I?). Ag 18 well ¥mown,

5@ - T) sin 20 s the product of inertis sbout the xg— and yg-exee

(referred to in equatiog (60)) of a cross section. In the following
text the sabbreviation 112 = / dr (Il - Ia) will be used; IP denctes

the polar moment of inertle of a cross section about the Yy~ and Z,—exes
(see oquation (61)); 1,5 and 1., (see fig. 3) are the distances of

the centrold and of the aerodynamic center, respectively, of a blade
crose section from the leading edge of the airfoll section. The abbrevi-

1 =1
ation £ = —"-5-?4‘2 will henceforth be used. The last term of equa~

tion (22) represents the twisting moment of the inertle force for the
case in which, for ug # O, the pitch angle 6, 1n steady flight, "

varies periodicelly with (= Qt), that 1s, with time. Analogous
inertia terms will alsoc appear in the expression for the moments M

yl
and M,,, equations (23) and (29), respectively. These inertia terms

are all derived in detall under INERTIA FORCES AND MOMENTS AND EQUATIONS
OF OSCILIATION and are given in advance here only to meke the expressions
for the moments M., Myl’ and M,; complete,

The second term of equation (22a) represents the moment contritution
of the distribution of the centrifugal forces in the cross sections. The
third term of equation (22a) is due to the fact that for rigid-body oscille~
tions the centroid axis (see fig. 3) (which will generally not pass through
the serodynamic center) must be teken as the reference axis. For elastic
vibrations with the twilst angle equel to zero at the root the sheer center
(vhich for airfoll sections, however, lies very near the centroid) must
be substituted for the centroid. '

By keeping in mind the orders of megnitude of the terms involved and
rejJecting all terms smaller than the second order, remembering that
CMac will, in general, be negetive, and assuming (as appears reasonable)

7’cg = lac '
that \ ————) =1 1s constant (2 0.15) along the blade length r,
v

the expression (equation (22a)) for M,; may be written es follows:
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b of

R
Vcecadr+ff Lz'cd.r
1
1

R 2, (R
5
-oszgef (1, - 1) ar =% -a-é- f I, ar  (220)
ry oy Ty

Momont about y;—exis.— It willl be seen from figure 3 that thils moment

is:

Myl = —IR [Lz'r cos B - (I'xl' + Dxl')r gin B] ar
T3

- R »,
vhere Ip = f Ar dr.
T3

In equation (23), the differential d4C of the centrifugal force is
given by :

ac = 92rl dm = narle dr (2k)

where A i1s the cross—sectionsl ares of a blade element at the distance r.
The value of ry can be obtalned from

rl2 =e° + (r cos B)2 + 2e(r cos B) cos ¢
or

rlzré.-v»n-%-Be) (25)

to second—order small quantities.
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The value of (; - gl) can be determined (see fig. 5) from the
approximete reletion

(- t)rm (o) =2

e + X

or
(t-t)~t (26)

to second-order small quantities,

When equatiors (2k), (25), and (26) are put into equation (23a) and
terms smaller than the second order are rejected, the expression for M
¥yl
becomes
2

R _ "B _ -
Mﬁ"f Lz'rd.r-c-anzﬂ(fﬂ-p&; +5923T'29-IH+638 (27)
r
1

where
- R
] Tf Ar 4r
ry

The last term of equation (27) represents the effect of the weight of a blade.

Moment ebout zl-axis.'- From figure 3, thls moment is seen to be glven by

R R P
M, =fr (13,1""Dy1')rdr"£_ rsin(g-g))d0+092 -
i 1

Iy (28)

From equations (24) and (26), M,; to second-order smell terms cean be
written as

R 2
le -:fr (Lyl' + Dyl'>r ar + o’ﬂege S + 092 a*zo EE (28b)
i
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Finally, the moment about the z-axis will be
R R |

Mz -_:/r @yl""nyl')rl cos (C—Ql)dr-JL (Lxl'-l-])ﬂ')rl sin(§—§l>dr
1 i

e _
+ of? -B-F_ Ig (292)

To second-order small terms, thig may be written simply as
R o, =
M‘,z ’fr (Lyl' + Dyl')r dr = le - oQ“te S - (29b)
1

It may be remarked that the center of pressure on a blade at any speed
ratio pp moves radilally with the angle of rotation VY. This motion of

the center of pressure 1s, however, taken into account by the moment—
equilibrimm relatlons between the aerodynemic, centrifugal, welght, and
inertia forces. This radiel displacement is compensated for by the change
of pitch angle 6 with the azimith angle V¥, which can be accomplished
by either a swash plate (sufficient near hovering for the first harmonic
term) or & cam plate (for higher speed ratios). At higher speed ratios
(not treated in this report) the problem of the blackout of Llift toward
the root of the retresting blade would have to be considered.

Figure 3 shows that any force components in the Xy~ and yl-directions
are related to those in the x— and y-directlons by

Fyq' = F,' cos { —F.* sin &, Foq' = Fy' cos § + F ' sin §

b

When it is remembered that Fx' and Fy‘ are in this case the second—order
small quantities I.4?, Lﬁ_', D,', and D_' and that £ is first order

J
small, 1t follows that to second orders

t ~ ] t ~ ]
Fa'®F', Pp'3F

This simplificetion will be used in the followlng sectlon.

Expliclt expressions for moments.— The four mn:énts , as given by
equations (22b), (23b), (28b), and (29b) can be evaluated by using
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equations (10a) and (14) for the 11ft and drag components and the assump—
tion (18)-for the values of the zero-lift chord c¢ 4n terms of r(or s),
that 18, along the blade axis. In the evaluation of these moments, for
the analysis given here, all terms smaller than the second order have
been rejected, and for further gimplification, even second—order terms
have been neglected when they appear as additions to Pirst—order or finite
terms (for example, as in L,*). Moreover, powers of 8y higher than -

the first have for simplicity been neglected. The results obtained for
the moments are then (see appendix C); .

M, = "\09233012{'—022—0" E. + 8y + h-ue(l + 84) sin ¥ + 3uee(l —~ 84)(L — cos a.yﬂ

-1
—“chc a")(l-&- 84) [56_—2-4- p.e@'-e ain*—%+-§cos#)
2

+ E%— (1 — 284)(B 8in 2¥% + 6(1L — cos 2§) — 2y sin *E]

_ 3,
—0929I12 ~ o2 ~—r J[}p dar . - - (30a)

For hovering (ug = 0, 6 =46,),
m2R3ci2 ch = lge
(o) =m0+ o) | o | - oo 22

2 —
—0° 6, I, (30p)

where, ag before:

T, Ef:: (Il - 12) dr

L 1 2k _
Myl = --31-; 1+ Eei)npﬂ R_ci[Be + laue(ﬁ cos ¥ + 260 sin Vv — 7)

+ Elue?(B cos ¥ + 8 gin ¥ — v) gin {I
Ps(T. + 5 2 828° T. + Sog (31a)
+ O B(IH + S?) + o E;;§_ III
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For hovering,

2 1 4 2. (= - -y
(MVJ-)c--L l+§e5):tp923019°+mﬁ<13+se)+sgs (31v)

315
1 12 ﬁ
=0 ==_19(y ~ in ¥
(a.p+5>+u°3l5 (7 Bcés*+ksn)

Mq=2= ll-:rpﬂth'c
zl 1 315k

1 2 2l
+-E<qp+-5-9)(ﬁ coe ¥ + O sint—y)]ﬂle I‘):(B cos ¥

a,
+Gsini'—7>7—Bcost+fism#+%(ﬁcosv+6sint--y-j}

. + cegﬂagq.- o 2—2*-2 EH _ (322)

(le) - - 32 xpnaR’-l-c; ec<a.p + % Gc) + geffS (32v)

M, = M;; —cFte § R =)

Expreasions (31a) and (322) for the moments Myl and M ., respectively,

will be used in the section STEADY STATE IN HOVERING AND IN LOW-SFEED
TRAVELING to dstermine the steady—gtate values of B and &, which will
be constant in hovering, end functions of ¥ and ue in traveling. These

expressions for the moments will also be used in the following section to
determine the "quasi—elastic" moments (that is, moments depending on the
deviation from the steady—state equilibrium position) during en oscilla—
tion.

FORCES AND MOMENTS DUE TO SMALL OSCTLIATORY

- DISPLACEMENTS AKD TO VELOCTTIES

In order to treat fully the questions of frequencies, amplitudes,
and stebility, the forces end moments due to oscillatory displacements
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= = = & s - 4 A = 36
AB =B, AL =, A9 =6 and velocities ﬂ d'g’ QEE%, 9=E-

must be determined. These will be the quassi-—elastic and the aerodynamic-—
damping terms in the final dynamic equations of osclllations about a
state of steady motion. The oscillatory displacements and velgcities _
which must be considerec herein are the engular displacements B, T, 9
and velocities B, {, 6. Because only natural (or free) oscillations
about a state of steady flight are treated 1n thils enelysis, the fluctua—~
tions (in megnitude or direction) of the rotational speed as caused by
change of engine torque and of the translational inflow velocity v,

as cauged by gusts or change of angular position of the driving shaft
will be left for a later research. These latter fluctuatlions would give

rise to forced oscillations, which could be treated by the same general
mothod as glven herein for the free oscillations,

In the followlng anslysis, squeres of osclllastory displacements and
velocltles will in all cases be neglected.

Quasi-filastlic Moments

The quasi-elastic terms, which must be used 1n the dynamic equations
of oscillation, can be dstermined from expressions (30a), (31la), and (32a)
for theo moments by putting

6 =0,+8, B=B,+B, (=6 4+T (3%)

in these expressions, In equation 3L, the gubscript o denotes the value
for the steady state, which is constant for hovering (g = O0) but a

function of ¥ for traveling (¥, # O), whereas the bar denotes the

small oscilletory changes (verying with time) about the steady state.

The quasi-elastic terms sre the moments due to the changes 6, B, and

T. By putting, therefore, equation (34) into equations (30a) to (32a),
subtracting in each case the moment for the steady state (0 = 6,; B = Bg;
and ¢ = {J), and neglecting powers of the oscillatory changes higher
than the first, the following expressions are obtained for the (aero~ _
dynamic and centrifugel) quasi-elastic terms:

02r3e, 2
(Mﬂ) =n’p cil§l+81)f 9+31(2681n11f+ﬁcoew)
ge

+ 3%2(1 — 284) [E sin 2y + 6(1 - cos Nﬂ - 00?7 112 (35)
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..k 1 4 - _ |
(Myl)qe -7 ;I; L+ 551):1'09211 °1[85 + 12p, (B cos ¥ + 20 sin ¥)
+ 21..1.32(3 cos ¥ + § ain ¥) sin \lf] + o9°F (EH + 8 e) (36)

b 8 3 2 b=
h = = Q am——— -—
<“Zl>qe brpQ2R cy Tiox 2} (cz.p + 360) + U 105 [9 (7 By co8 ¥

+;—p-sinﬂa—‘§9°+%(ﬁcosW+-9-sin1f)<ap+%6c>+§-3(BOOOB*

+ 64 sinﬂf—yﬂ +p32% (Bcos*+§sin¢)[§i(socos‘¥

+6° sinqr—-y)+-y-Bocosw+;g-sin\{]-('§cosv)(ﬁocosi

+ 6, 8ln ¥ - 7) + 0o 3 g - “(37)

Components of Total Relative Inflow Veloclty of Oscillation

By referring to figure 1 and using the fact that, at any distance r
along a blade from the hinge, the linsar velocity rf due to_angular
oscillations of the flapping angle will be perpendlcular to r and will
lie in the plane which contains r and 1s psrpendicular to the xy-—plane,
1t is seen that the velocity components duwe to rB will be:

-
.

V‘:résinBcosgerB

xB

Vo =vhsinBstnlwO > (38)

Vz'B=r[3 cos eré
-

Similarly, use of the fact that the linear wveloclty rﬁ, due to oscilia-—
tione of the lagging angle, wlll be parallel to the xy=-plene and perpen—
dicular to the projection (of length r cos B) of the blade axis r on
the xy—plane yilelds for the veloclty components of ré:
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Vxé=rcosﬁsin§~rﬁa

Vyi = T cos B cos ¢ w vt } (39)

Vzé = Q

e

All approximetions made in this entire sectlon are up to second—order
small terms,

Damping Forces

The contributions to the serodynamic forces following from the
changes of the velocities calculated in equatiors (38) and (39) can be
determined in the following general menner. The veloclty increments
must be added to the corresponding expressions (equations (5)) for the
velocity components, The forces and moments are then determined by the
seme procedure as in the section AFRODYNAMIC AND CENTRIFUGAIL FORCES AND
MOMENTS IN STEADY HORIZONTAL FLIGHT end the damping terms will be those
containing the quantities ¢ and B 1in the expressions for the forces
end moments. In this menner (see appendix D), the expression for the
total circulation to second orders is found to be:

1"=ncm-[6(l+n)+u(ﬁ+§9) cos ¥ + (6 — pt) sin\r—a—-eg-—-é- (u0)
Q Q

Then, by the use of the Kutta—Joukowski relation given in equation (6)
(see appendix D), the increments dus to B and {, in the lift components
per unit length, are found to be h

ALyt = xpR®rZoB(1 + u sin ¥) g— (kla)

ALy' = - n:onergc % [9 + (2B cos ¢y + 8 sin ¥ - 2’)‘ﬂ (41v)
ALZ' =_n-092r2c (L+ 7+ ut cosy+u 8in ¥) g

+ é- EBG + w(B cos ¥+ o gin ¥ -—inl} (k1)

The additional drag components per unit of blade span, to second orders,

can in accordence with equation (11} be determined from
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x _ vy | z
Dy = — D', D! = = ADY, MDY = = D (42)

where AD' is the increment in the resultent drag and may be given,
according to equetion (12), by

ADY = (G.P + a‘i) ALt (43)

Therefore, by putting equation (4lc) into equation (43) and then putting
equations (43), (5), and (13) into equations (L42), the expressions for
the addlitlonel dreg components are found to be: '

—~

x

+ .
AD_Y = E?Tﬂ rccﬂzreu(coa ¥) -?;

. (k)

fol k18

Mt = g.a_";%.aﬁ wc p@%r2(1l + 1 sin V)

A‘Dz'ao

e’

As 1n the section AERODYNAMIC AND CERTRIFUGAL FORCES AND MOMENTS IN STEADY
HORIZONTAL FLIGHT, oy may be cbtained from equation (15).

Damping Moments _
Damping momeonts about the hinge point are caused by demping forces
distributed over the length of the span of a blade and ascting with their
radial levers. Such moments appear furthermore as the effect of the
pltch-engle oscillation. This latter effect, for the moderate velocities
appeering in helicopter flight, can be calculated by meens of an apparent
change of local angle of attack under the assumption of quasi—stationary
flow. This calculation (see appendix E and fig. 6) leads to the relation

n: . MR 3
(M'ﬂ-)e = "i‘a' Defri drvclc

wvhere, from equations (8a) and (18),

R _ _ )
g e ]
ry dr'?’c]_c Ry =5 (l + s_,b 2+ 8 + T + 'me(sin\? + & cos V)] (L5)
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This simplified approach is made for the damping momenta, although it is
well known that for high values of oscillatory and inflow velocities an
effective change of camber of the alrfoll, as well ag the reaction due
to the tralling vortices of the flow around the airfoil, would have to
be considered. As has been made plausible from the theory of stralght—
moving alrfoils, however, these effects are small for velocity changes
occurring in helicopters., A sufficiently exact theory, moreover,
including radisl velocitles and hellcal distorted vortex sheets has

not yet been developed.

Another problem which must be consldered in a further development
of the dynemic theory of flexlble blades, with or without fixed roots,
is the Influence of phase differences between flapping and twisting dus
to the distance between the center-of-gravity axis and the elastic axis.
This problem does not appear with hinged and sufficiently rigild bledes,
which are assumed in thls paper.

The demping effect of flapping and lagging can be obtained from the
expresslons for the damping forces per unit of blade length in equa-
tions (4le), (4lb), Qilc), and (44). If the moments of these unit forces
are Integrated over the length of a blade anslogously to the method of
equationa (22b), (23b), and (28b) for steady flight, the following
demping moments, including also the effect of pitch~engle oscillation,
are obtalned. The increment in Mx_l dvue to damping will be

R o R « « PR 3
V. &N, ccdr + ¢ ALY ¢ 3y - — v
r, %1 °1 z 12°9f 0, &

1 "1 T (ue)

Mg = =0

C
Mac

"where Ve, (see appendix ) 1s to be determined from the components
AVy, OVy, and AV, of-equations (38) and (39) and from the direction
cogines ?,cl, gy s end. gy (see appendix A). Similarly, from
equation. (23), the increment in My1 18 seen to be

R
Mgy = —f AL, r ar (b7)
Ty

Finally, in accordance with equation (28b), the aercdynamic and centrifu—
fal dempine moment about the z;—axis will be

R
oM, =J; <ALyl' + ADyl'> rdr . (18a)
i
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As shown before,

| ] ~ ]  §
I’yl <or Dyl) Ly (or Dy)

to second—order small quentities. Therefore equation (Lh) may, to second
orders, be written thus:

R
%, =fri (ALy' * ADy'> r ar (48b)

Putting equations (4le), (41b), (Llc) and (4k) into equations (46),
(hﬂ, and (418b), neglecting terms smeller than the second order (taking _
Mac and all oscillatory velocities as first order emall), and rejecting

powers of s; above the first results in the following explicit expressions
for the serodynamic demping moments (see appendix F):

92R302 .
P L ) io
AM g == <l+sj> T IT-35E2+31+7Q.—251)H3
+ T l-2sbue(sin'4f+§cos \?El
é{fn[6+2u(ﬁcosqr+sin‘¥—7ﬂ CM l(l+2p. sin\lf%
+%f nE.+2ne+2p.e(sin\V+§cos \lf]> (9)
o 16 1 ]
AMyl=3tpﬂRci;; 1+555> s-lee+3u.(Bc:ozes\lf+9sin'\if—y)
B 1 nolstn ¥ + & cos V|7 (50)
+§E_+3qe+3,:.es + S cos _i >

P TR A BN ~L)s-2
L\le- :thRci3l5 l+2s§9{2< 5k>9 kcr.p
1 1 %p __l.
3“6 <_._.5k>ﬁcos\|r+<l—5k>9 Ein\]!—k Binﬁf—aé—sk)'r (51)
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In addition to the asrodynamic demping moments given in equations (49)
to (51), there may, in general, be "pseuvdo-damping” moments due to a change
in the anguler velocity £ caused by ﬁ. This change can be determinsd
by substituting (2~ ) for Q in expressions (30a) to (32a) for the
aerodynemic and centrifugal moments, subtracting in each cage the moment
when ¢ = 0, and neglecting squares of ¥. It will be observed from
equations (30a) to_(32a) that each of the moments in the steady state is
proportionsl to s that is

M = Gq ' (52)

where G is & function of 6, B, ¢, V¥, and so forth, but not of Q.
Therefore the pseudo-demping moments Abd M will be of the form

Bpg M = = 26 8f (53)

In steady flight, however, the angles §° and B, will so adjust them—
selveg that the moments M&l and le
be ageumed that by soms means or other, for exemple, counterwelghts, the
moment Myq will also be balenced. Therefore the value of G as defined
by equation (52) will be zero. It follows then from equation (53} that
(because G 1is obviously the same function in equations (52) and (53))

are both zero. Moreover, it may

Bpg Mx1 = Bpg My1 = Bpg Mpy =0 (54)

Hence, the effect of g on £ need not be consgidered.
INERTTA FORCES AND MOMENTS AND EQUATIONS OF OSCILIATION

The derivaticn of the inertia forces and moments may be based on the
time rate of change of the moment of momentur vector B referred to a
coordinate system rotating sbout the driving shaft of the blade system
with angulsr velocity Q. It is well known that with such a coordinste
system the centrifugel forces, the centrifugal moments ebout the blade
axia, and the Coriolis forces must be added to the other impressed forces
(in thie case, serodynamic and gravity forces).

The blade system is essumed to consist of blades, each hinged to the
hub driven by the engine shaft, and the hinge system for each blade 1s
assumed to have a common hinge center, which is then the natural moment
center for the moment of mamentum vector. .
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Tt is true that for reasons of detail design it is often found that
the flapping hinge and the lagging hinge are not concentric; as only the
eccentricity of the lagging hinge is of importance, however, it is a very
small loss of generality but a great advantage in simplicity to assume
concentric arrangement of the hinges. It may even, for the development
of larger systems, be convenient to support the entire centrifugal forces
by one spherical bearing surface instead of by several necessarily gmaller
cylindricael bearings, each of which must support the entire centrifugal
force.

Moment of Momentum Vector

The basic dynamic theorem is expressed in vector notation by the
equation

B=XM (552}
where 5. 1s the moment of momentum vector,
5=
at

end M 1s the moment vector of centrifugal, relative acceleration,
Coriolis, aerodynamic, end gravity forces.

Tn Cartesian coordinates, equation (552) can be expressed by

Bx = l&: By = Myr Bz = Mz (551’)

The vector B and its rectangulsr components must now be developed in
terms of the positions and velocities of the mass particles of the blades,
whereby it i1s sufficient to consider one sample blade.

The general relation in vector notation is given by

) ,fR an(7, x ¥ (562)
Ty

where T‘b denotes the resultant velocity of a blade element, and T the
redius vector from the moment center (hinge center) to the particle.

With u, v, and w as Cartesian components of V-b and =x, 7,

and z as those of T, equation (56a) is equivalent to the following
three component equations:

B, = [ dn(vwy - vz)
By = [ am(uz — vx) (560)

B, = [ am(vx - uy)
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The integrals in equations (56a) and (56b) must be taken over all mass
elements of = blade.

The wvelocity vector Vb s ©Or its rectangular components, must now

be expressed by the condition that the blade is kinematically constreined
to move sbout the hinge center. Thls fact, in vector notation, 1s
expressed by

T, =Tx8 : (572)

where ® 1@ the vector, with components a, ®y, and , of the

anguler velocity of the blade. In Cartesian notation equation (57z) is
expressged by

U= oz — Yo,
xw, — zay (57b)
w=ymx—m:y'

Inserting equation (57b) into equation (56b) and factoring out the density
o of the material of the blade gives —

By = (TJ:""JC - -fxy‘”y - fxz‘”z) o
By = (fywy - -fyz‘“z - fyx““x) o > (58)
Bz = (Z-fza.)z - sz‘”x - fzymy) o]

-~
where the moments and products of inertie are defined (in the usual way) dy

fx’ffdﬁdr(y2+ze), Ty-:/ dAdrz2+x2), :-fz=ffdAd_r(x2+y2)

fﬂ=[/‘Mdryz, sz=JfMsz: T =ﬂMdrxy

v

(59)
Xy

and where the bar over I 1s intended to emphaslze the volume integrsls
as opposed to area integrals appeering later (cf. equation (61)). The
coordinate system x, y, 2z (see fig. 1) in general does not coincide
wilth the centroid coordinste system fixed in the blade, except when the
peremeters B8 and € are zero. It is therefore mdviseble to transform
the moments and products of inertla to the coordinate system fixed in

the blade. This transformation le simplified by the fact that Xg coln-—

cldes with r, y., with c, and =z is normal to ¢ and that only
8 8

the first powers of the angles B and { need be considered. Thus
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x=r, ycys—gr, z =24+ Pr (60)

The expressions (59) then take the following forms:
Iarxp =—§IH-_—.—L}1drrA, I, = g

T T = oT T I >
Iy=IH+fdrIys, vz =6L[‘c1r( —I)—GIM, I,=-4Ig (61)

I, =1 +f ar I,., = pIg, T, = oI,

= 2 2 = 2 =
=f<ys +zs)dA, Iys'_'fzs da, Izs=fy82dA

and where A denotes the cross section (varying with r) of a blade. In
equetion (61) it has been observed that the static moments about the
centrold axes are zero.

HI

where

Time Rate of Change of Moment of Momentum Vector

The time rate of change of the moment of momentum vector B, with
the condition that squares and products of anguler accelerations and angular
velocities shell be neglected, whereas the products of acceleretions end
the stationary angles 6,, By, end § shall be retained, can now from

equations (58) and (61) be expressed as follows:
ﬁ

+my§ IH—wBIH>

\}y(IH fdr 1 > — 8T, + by gofH:l s P (6)
e e o) s8]

The blede angles 6, B, and { in this equation are provided with the
gsubscript o 1n order to emphasize that they are parameters of the
steady state, which are constant in hovering and functions of V(= Qt)

-’
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in traveling. In order to express the moment of momentum vector by the
anguler acceleratlons 6, B:, and ¢ . instead of, as before, by the
angular accelerations w,, @y, and Wy s the following @ransforma‘bion
may be appliec?. by the proJectlon of the components @, = 6

and wy) = — B on the axes x and y.

w. cos Bcos § + w sin!,”é-—é!’.

@y y1l

mys—a)rcosBsin§+mylcos§~-é§-f3 F (63)

[ 4
®, - ¢ >

-
The corresponding compcnents of the vector B can be derived similarly
by the relations

Br = By — QOBy
(64)
Byl = BICO + :By

Applying equations (62) and (63) ylelds “~N
B, = céfr - ‘gi;of ar I, + 'g'sofﬂ>
By =0 [- 'é(fH +f ar be + E0 T, + 'e';q/ ar Iz;\ > (65)
By =0 l}'g'fnq.farxze) -8B Ty + 'éeo'fl;l

The centrifugal (inertia} forces and moments are taken into account in the
sectlons glving the conditions of equilibrium of-aerodynamic and centrifu-

gal forces, especislly in steady flight (see STRADY STATE IN HOVERING
AND IN LOW~SPEED TRAVELING).
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Coriolis Moment Vector

The vector =a. of the Coriolim scceleration is given by

[+

B2 = 20X7V _ (66e.)

In the case considered herein the vector of rotationsl velocity coincides
with the z--exis, that 1s,

Q=0

The vector product of equation (66a) therefore consiste only of the two
components:

oy = = 20v

(66v)

al.‘::y = 2Qu

By virtue of the relations (equation (57b)) between the velocities wu and
v of a mass particle and the angular velocitles wy, aay, and w, of

oscillation about the hinge, the Coriolis forces of a mass element become:

N

ar = 0

cz
dF,, = dm 20 (a)zx - cnxz> > (66c)

chy = - dm m(:»yz - mzy>

-
The total moments of this vector distribution up to small quantitles

e
(cross products of wy, Bgs Wz, B, and C,) of second order, 1f n <=-= F)
as compared with 1, 1s neglected, are thus: '
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> (67=)

™
R R R
M, =- dFey T8 = 208 @, dmrz—(nzf dm ry
Ty Ty J Ty
R
Mcy = Jl‘ dﬁbx rf = 208 w, dm rx -y dm rz
1
R
M., = G_F‘cxrg+chyz>=29§cnzfd.mrx—wx[dmrz
Ty
- (éyu/ﬂdm rz —-wzu/ndm rx)
-’

By use of the transformations (equations (60)) of the moments of inertia

to the blade axes and the notations (equations (61)) of the moments of

inertla of the blade, 1t 1s found that

Myx = O

Mcy = EQcIHBmz o - QQGIHB§

M =- aﬁafHﬁasy - eszciﬂsé

czZ

-

where, 1n the last terms on the right-hand sides, the relations (63) have

been inserted.

The transformation to the moments about the hinge axis y;

flapplng angle B and about the axis r of the pitch angle 6 1is again
derived as in equation (64) and ylelds, to second—order small quantitles,

the results

~
M =0

=
]

oz 2Qciﬁﬁé

(670)

of the

(671c)
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The entire moment of momentum vector is now given by eguations (65)
and (67c), that is, by:

l'syl -¥ f (68)

Equatlions of Oscillation

The equations of oscillation are formed by equating the insrtia
moments (equations (68)) to the aerodynamic, centrifugal, and damping
moments. Thus, by using equations (65) and (67c), the oscillation equae—
tlons are seen to be:

iar = b'afr - 'ﬁgoafzs + Zeoci'n = Mgy + AM (69)
By =-— BGIE + oL} + ge c:'c' + e;oafzs + 2B o0l = Myl + AdMyl (70)
]'321 =-t GTH * szs) - gBocfH + Beo -flz - 25300'511-.'3 =My + &My (1)

In these equations 6, B, and { are the totel ‘values, a8 given by
relations @ = 6, + 6, and so forth (equations (34)), and the unknowns

in the foregoing equations are the deviations 9 B, and g from the
steady state of equilibrium.

Equations (69) to (71) can be written in slightly simpler form as
follows: From the definition of the quasi-elastic moments (given in the
section FORCES AND MOMENTS DUE TO SMALL OSCILIATORY DISPLACEMENTS) it
follows that, for the aerodynamic and centrifugel moments

M= M, o+ M, (72)

where M 1is the total moment (that is, 6 = 6 + 8, etc.), My 1is the
quasi-elastic moment, and M, 1s the moment in the steady state. More—

over, for the damping moments,
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= A= M o M
MM =g M+ B (73)

where, similarly to equation (72), AM is the totel damping moment
(6 = 85 + T, ete.), Ae M 1e the totel demping moment minus the

demping moment Ay ..M for the steedy state (6 = 8,, otc.).

Hence, using the relations (34), (72), and (73) and obeerving that
the steady-state moments must by themselves add up to zero for each axis
yields the following simplified set of equations of omscillation:

éi;afr - %rofzs + 'E.Boofﬂ - (Mﬂ‘)q_e i (1)

- B{oIg + c-fys) + §600112 + Egoo-fzs + ‘ZEBOUQ_I-H = (Myl)qe + O Myl (75)

- E@-fﬂ + UTZS) - ?BOUIH * anafla - .eéﬁoa‘ffﬂ = (le)qe + 05 Mp (76)

The right-hend sides of these equations can be obtailned from equations (35)
to (37) and from equations (49) to (51).

Relations among Geometric Constants of a Blade

For purpcees of simplicity, it willl be convenldent to use certaln
relations among the geometric properties (for example, momentm of inertia)
of a blade appearing in the foregoing equations and elsewhere. With the

ta of the helicopter heretofore assumed, the following relatlons can be
derived (see sppendix G):

I.YE << Izs5 L.~ 112 x Izs = I, say
~
I/Ig ™ 0.00386, so thet Tg+ I xIg+ I, % Iy
Rl \ (7
- el e - ci
- 2T/, Tg+ Te = T2 + 2n,), L = 796(1 - o))
H

-
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STEADY STATE IN HOVERING AND IN LOW-SPEED TRAVELING

In order to solve the equations of oscilletion, it 1s necessary to
determine first the values 6,, B,, and § o Of the pitch, flapping,

and lagging angles, respectively, of the blades in the steady astate.
They will be calculated herein for the cases of hovering and low—speed
ratio of traveling.

If in the steady state the load—carrying condition (equation (19))
for 6, that is, ite valus eo, is by some means enforced, then B

and §, as long as no kinematic constraints are imposed on them, will
ad just themselves freely, so that the moments Myl and le are zero,
If kinematic constralints are imposed it is stlll possible, by certain

pread justments, to make these moments zero for the same steady--state
velues B, and ;o as without constraints.

In treveling it has been shown thet it 1ls necessary to change the
itch angle 6 along the circumference of the path of a blade
fo S ¥ <2rx) 1in such a way as to keep constent the force component
perpendicular to the plane of rotation. This aim, however, will lead
to difficulties if the blade 1sg continued too far Inwerd, that 1a, to

r
a value 8y = R—i so smell that thls inner part of the blade, when on

the retreating side, does not find a positive relative inflow velocity.

If this case cannot be avolded, then an additional sideways tilting Ay
of the exis of rotation would be necessary to counteract the moment A Lze
by a moment of the weight WAyh (h = distance from center of gravity of
structure to center of hub). A force component transverse to the direc—
tion of flight would arise., A loss of totel 1ift L, would also result,

and therefore 1t shall be assumed in the following dlscussion that Lz

can be kept constant along the circumference by means of a periodic change
of the pitch angle 6.

It shall not be discussed in this paper in which menner, thet is, by
which mechanism, cem device, or tilted swash plate, the varistion of the
pitch angle 6 may be reallized. It may be assumed that thls has been
accomplished in some way. ‘

Hovering

For hovering, the steady—state valuses of B and { can be resdily
obtained from the expressions (31b) and (32b) for the moments (M Y

A
and (le)c. Thus
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N -
_ 32 1 ) p Bcq _ Sg
Bo = 315 (l t381)%g Ty + Se 8 'Q?<iﬂ_+ §e) (78)
L
R'c
Rt }.)
Cc 315 7 s %= M <éb + 5 6c (79)

Formules (78) and (79) can be interpreted also as an indication that it
1s posslble to regulate automatically the equilibrium value of the pltch
angle 6, by the equllibrium values of the flappling and the legging

angles B, end ..

Low-Speed Traveling

Although the sngles &6, B, and ¢ will be constant in hovering, -
they will, in traveling, have to vary pericdically during esch revolution
under the action of the weight of the system and the inertia, damping,
and Coriolis forces of the masses of the bledes. It is necessary to cal-
culate these angles because they appear as varlable coefficlents In the
differentlal equations of osclllation. — _ _

This celculation, however, may be simplified by assuming the speed
ratio up, to be a quantity sufficiently small so that second and higher
powers of it mey be neglected. In the calculations 1t will be treated
ag a first—order emsll quantity. Such e simplification is advisable in
order to gain a first access to the behavior of the blade system in the
transition from hovering to traveling. From the knowledge gelned by
such a first enalysis, it will then later be poasible to proceed to the
extension to higher speed retios,

The steady-state pitch angle 90 must be determined from equation (21),
which, reduced to first powers of u,, assumes the form:

9°=90—k2ue<26c sin ¥ + B, cos¢—7)+60—°- (80)
2
where
N
L R'c
C2=— l+l81_)ﬂ'g _i
315 o IH
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and where B " ig supposed to be also developed up to first powers of et

(See equations (81) and (85).) It.may be remarked that the denominator of
equation (21) as fer as it concerns the term with B, can be taken es

wnity, since B," 1s already 1tself a.second—order sma.ll quentity. (The
demping term in B,' &iven by equation (4lc) has been neglected in this

section but was later found to be of the nonnegligible order 2. In the
section INFLUENCE OF DAMPING ON STEADY-STATE ANGLES IN TRAVELING this
term has been incorporated into the 6, Bo expressions. It can thus

be finally stated that B," and Bo' sre the only dynemic terms which
must appesr to obtain equations (95) and (96).)

Equation (80), however, is not sufficlent to determine 8o, because
the ¢elue of the term Bo" appesaring in it depends on the equilibrium of
moments about the y;-exis. The moment Myl is given by equation (3le),
which, strictly speeking, must contein in sddition to the inertia term
aﬂaIHB" a Coriolis term M,y = — 200IyB, f (=see equation (67c)), 2
demping term (equation (50)) proportional to C eo, end two inertia terms
(equation (65)) proportional to go o end to ] Q Each of these addi-

tional terms, however, 1s smaller than the second ord.er and may therefore
be neglected in equation (3la). (See, however, additional term in Bo

from equation (50) in (91).)} Equation (3la) for My; = 0 (without (91))
gives now (by using equation (77)):

Bo" + Bo@' + ene) = CQEGO + 12140@6 cos ¥ + 26, gin ¥V — 7)] - i—g; (81)

By eliminating Bo" from equations (80) end (81), the following relation
between 6, and B, 1is obtalned:

@.+2neﬂ =02|:2e +69 +(l2—6k2>ue(ﬁ cos‘lf+29 sin\l-'—y)]__

(82)

By double differentiation of equation (82) end then substitution for BC;“
in equation (80), a differential equation in 8, @alone appears, namely,

- %eo" + 8, = 0 + Kyigy — b 6 sin ¥ — 2u_B, cos ¥ (83)
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The only integral of equation (83) not containing free oscillations end
periodic in terme of sin ¥ and cos ¥ can be readily shown to be:

o]

This vrelation must therefore be assumed as the steady—etate variation of
the pitch angle 6.

If equation (8k) is put into equaetion (82), ar analogous expresaion
is obtalned for the steady—state variation of the flapping sngle B
nemely,

o)

(1 + 2ng)Bo = 02‘:890 + <8k2 - le)ue-y -Sue 2k, -3) 6, sin ¥

- 3ue<2k2 - 3)Bc cos \l_rj - -i—g; (85)

Finally, the expression for {  must be obtalned from the moment
equilibrium about the z;-exis. From equation (32a) for M, end from

expressions (65), (67c), and (50) for the inertia, Corioclis, and damping
moments, it is seen that up to second—order small quantities, the moment

le is

%

32 b 1 o=, 2%5%=

M. = =2 no0PR%. 0 ie a°S + of I 86
21 s 7P cy c<<:r.p + 5 c) + u;oe + O " " (86)

" By setting le = 0, the particular integral (without oscillation) of
the resulting equation is seen to be S )
4

32 1 1
Co = P :_tg- = ec(a.p + 58; = Cc (87)

Influence of Steedy-State Inertia Terms

Tt is interesting to chserve the effect the dynamic forces and moments

in the transition from hovering to traveling heve on the values of the
angles 6,, By, and {  1n the steady state. If the dynamic terms

were neglected, then from equations (80) and (81) the values of 6o &nd

B, would be found to be (primes are used to distinguish from the correct

values)

6o = 0 + Ko7 = Jgfo 810 ¥— 2 ugB; con ¥ (8
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8o = 6, + kpey — 2k, 6, sin v'-vkeueﬁc cos ¥ (88)
B°'<l + 2119) = 02[860 +(8k2 - 12);437 + (1.2 - 8k2)p.e(ﬁc cos § + 20, sin \if)]
2g
-=0 )
e (8

When equation (88) is compared with equation (84) and it is remembered

that with the numerical values used in this report k2 = 7, 1t is seen
that 6,* 18 the same as 8, except for some slight differences in

the coefficients of 8in ¥ and cos ¥. Thus the dynamic terms appear
to have 1little effect on the value of the steady—state pitch angle,
Comparison of equation (89) with equation (85) shows that, as for the
pltch angle, the value of B,* differs from that of Bo only in the
coefficients of sin ¥ and eos ¥. These coefficients in B,* (without
the effect of the inertia terms) are four—thirds times those of Bo

(with the inertia terms). The steady—state value §o of the lagging

engle, on the other hand, is not affected by the dynamic terms (cf.
equations (86) and (87)).

Influence of Damping on Steady—State Angles in Traveling

In relations (16) and (21) for the pitch angle 6, the inertia
terms of the blade appearing in the steady state of traveling have been
teken into account; whereas the damping terms have been neglected. It
seempd edvisable, on second thought, to consider also the influence of
these damping terms on the steady-state angles 6 _, Bys end §°.

(This influence, however, will not appear in the results of the oscilla-—
tlon analysis for low speed ratio Hes 28 1t would only lead to terms of

higher than second order, For higher speed ratios, nevertheless, the
damping terms would have an influence on the final equetions of oscillation.

Damping terms given by equation (4lc) must first be added to the
expression (equation (10b)) for the total 1ift gredient IL,'. In view

of orders of megnitude, these terms may be reduced to the single term
L' =— npfrc — - (90)

Addition of this term hes the conseguence of adding to the numerator of
the expression (21) for AR the additional term S
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38,

» (91)

and to the expression (3la) for the steady—state value of Myl the term

3B
2 1 L
—315 1+ -2-31) o0 R ey —B\Ifo (92)

Comparing expression (92) with the inertia expression appearing in eque—
tion (3le) shows that both are of the ssme order of magnitude. As has
been seen in equation (87), the value of t, will remain ¢, to second—

order smell terma, In order to find the angle variebles 60 and Bo
of the steady state for u, # 0 (but Mo small) the equilibrium condi—
tions (equations (80) and (8l)) of the force L, and of the moment Myl

must be complemented by the foregoing terms. Thus, instead of equatione (80)
and (81), there is obtained

B "
9°=ec—k2ue<aeo sin ¥ + B, cos 1!!—7)4--6—2-4- Bo' (93)
: 2
. B "
o, =-%ue(26° sin ¥ + B, cosxy—7>+g-co—-+ B!
2
1+ 29
+ By Z 4 228 (94)
&, a°R8C,
Writing
6o = 04 + 1y 07, By = B, + By (95)

egquating the right-hand sides of equatlions (93) and (94), and calculating,
as before, the appropriate particular integral, it 1s found that the
valus of B, remains the same as in equation (85), but that 6, as

given by equation (84) must be changed by the addition of the term
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HeBp' = 3“002(3 - 2]:2)(260 cos ¥ — B, sin \lf) (96)

The damping term thus appears to have an appreclable influence on
the steady—state value 6, of the blade angle in forward flight, although

1t does not affect the value of the steady—state flapping angle B,.

OSCILLATIONS OF BLADE SYSTEM IN HOVERIRG

General Explicit Equations

For the state of hovering (u o = 0) the right sides of equations (7k),
(75), and (76) are appreciebly simplified.

They may be writtén explicitly es follows:

6 I, — B LoIzg + EBcIH+—£——1) —[e 1 2—(2 + 81 + '(T]e>

128 R

3
+ Lﬂ.f(l + 21]e)+§._<2f 90 - !CM:01> ——B.[E i si) P %_Qz'fla}=_b%_l;

TR T o= 32 E|x( .1
_ B(IH + Iys) + T,T1p + 80oTgs + 2TBATE — %1-5- = [s (1 + 38y + 3 Tle)

vetois %si)] B (k) -5 ) |- om
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3 2= 2 E
Q(IH + Izs) - GBCIH + B 8.1, + EQEH = 1+ —eD(s o al)

M
2|~ 32 E 2zl
- 2B, IH]+9\:31592 c+cx,> -FT S - — (97¢)

where E = xn % QaRhci.

The exbtermal moments acting on the hinge system and transmitted through
the hub are M,,, le, and le. They have to satlsfy certaln condltions

in order not to violate the equations o:[' equilibrium, One of the possible
sets of conditlions 1s, for instance, = 0(6 = ec) with B and g free.
In this case My, (# O) gives the moment to be enforced by the pitch—
changling lever or gear, and Myl and le are zero,

Another condition might be suggested by such klnematic constraints
between 6 and B, and 6 and § that the equilibrium positions 8e,

Bgs =nd §° are obtalned autometicelly without an extermnsl pitch~changing

gear., A further condition may consist in fixing 6 by an external kine-
matic constraint (pitch~changing mechenism) but using e kinematic constraint
between B and €.

It is also possible to imtroduce into equetions (97a2), (97b), and (97c)
friction constraints, as will be shown in one of the examples. The cholce
between these and other possibilitles willl be made from the following
points of view,.

On the one hend, 1t 1s desireble to keep the natural fregquencies
avey from regomance with the clrculer frequency O of the drive and at
the same time to achieve a sufficlent demping decrement. On the other
hend, it will be necessary to make sure that the kinemstic conditions
do not interfere with the transition to traveling, that is to He # 0.

The effect of internal klnematic conditions (constraints) will most con—~
venlently be determined by Legrange multipliers.,

The kinematic conditlions can always be expressed by equations between
the coordinate varisbles, proferebly in such a way that the aforementioned
deslrable features are achleved,

The materlalizatlon of such a kinemstlic equation between any two or
three of the coordinates is the problem of the deslgn engineer, who would
have to declde whether to use linkages, gear wheels, cams, or hydraulic
connections, and so on, This detall—designing problem is beyond the
scope of this report, '



NACA TN No. 1h430 L7

Friction forces at the hinges, particularly at the lagging hinge ¢,
have been trled for the purpose of dampling excesslve lagging oscillations,
but with the detrimental effect of producing high bending moments at the
blade root. Such devices can also be readily calculated by equations (97a),
(9b), end (97¢).

The four cases of kinemetic and friction constreints previously
emmsrated will now be discussed in detail both for hovering (i, = O)

and for small speed ratio (ug # O).

case A: 6 (Pitch) Fixed, B (Flapping) and ¢ (La.gging) Troe

In this cese, ® = 0. The moments Myl and le will be zero, but

not the twisting moment Mxl’ which will be taken by the pltch-holding

and pltch—changing mechanliem or by counter flyweights. Two equatlions,
namely (97b) and (97c) with the right-hand sides equal to zero, must
therefore be solved for two unknown varisbles B and €.

Neglecting fys and fzs in comparison with -I-H (cf. equations (77))

end observing in accordance with expression (78) for B, that in equa-

tion (97b) the Coriolis term snd the serodynamic damping term in T partly

cancel each other, whereas in,equation (97c) the Corlolis term and the

~ serodynamic demping term in B cen be combined as one term, the equa—
tions of oscillation (97b) end (97c) become simplified to

"BIH"QecIla-gB%_g (1+%e.1+;32-qe -2 =¢ -9253(14-2%)'6-0 (98e)
Bof =TTy -FE L5 (1 v d,)(E o, + o) 0% T - 0 - (98v)

Equations (98e) and (98b) are e system of linear, homogeneous, differential
equatlions with constant coefficlents. The complete integrel of these

equations can, as 1is well known, be bullt up by particuler integresls of
the form

T =P, T = peP¥ | (99)

vhere F and D are real or complex constants (amplitudes) and ¥ = Qt.
The values of the real or complex constant (frequency) p must be deter—
mined, as ususl, from the condition that equations (98a) and (98b) have
solutions different from B =0 and { = O, (This means that their
golutions are also different from F =0 and D = 0,) These two equations
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will also determine the ratios D/F of the amplitudes of oscillation.
Putting equatlions (99) into equations (98a) and (98b), noting that

g% = Q, and dividing through by 02 yileld the following homogeneous
equations in F and D:

= (.2 E 32 1 2, = 28
_FEH(p +l+2qe)+p;?£;l+-2-si+gqg] +Dé BGI-p__({::‘E>=O

(100a)

E -—
Floop? T ~ p-ﬂ;31( )( ec““;) —DIHp2+2ne)=0 (100b)

Ag snticlpeted before, the determinant of the coefficlents F and D
must vanish, Hence p must be determined from:

- = B

+<p2 X _pgl)[pel—p—%( )( 2] +cx,>]-0 (1012)

-\2 -
I v, _E 32 1 3 6 I 3 3
1 QCIH) P QZEH:3151+2Esi +§ﬂe>1+9c(§ec+°‘1>§;('5“e D

o -
g I 2Sg E 32 )(6 )2 2
b o—— 0, = 1q =6, + l+k
I.Hr?"IH 1392913315 TEJ\5 % GPP+(+“G)I.),
E 32 1 =
+2ﬂea3—l§'(+-2-si+gﬂe) p+2qe(l+2ne)—0 (lOlb)

The velue of 6, ‘is glven by equation (20). For example, if

W = kOO0 pownds, p = 0,00238 slug per cubic foot, R = 25 feet 3
Q = 20 radians per second, @ = 0.020 (engle of attack about O
Claxrk Y airfolil),

for
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Ng = 0.05, ©y =& X 25 = 4,17 feet, n = blades, and s, = 0.2, (102)

6 1
then the value of 6, wlll be L
6, = 0.0306 (103)
Taking the value of _-:E—-, moreover, from equation (77), nemely
Iz
:_[T' = 0,00386
- Ty
glves R
- \2
Gc :]n:a— = 1,39 X 10-8
iz
f__s_n.g 0, _Z_.. = 1,52 x 100
Iz S (10k)
(6 +a9 (——q>=0618x10_5
28g E 32
02—2 < -s><9+a,P>=lpO6x10
-

Consideration of the four quantities of equation (104) which appear in equa—
tion (101lb) as negligible in comparison with unity is therefore Jjustified.
The second and fourth terms of equation {104) represont the influence of

the welght of s blade, and thieg influence will, in accordance with the
foregoing consid.erations s be henceforth everywhere neglected Equa-—

tion (101b) may hence be reduced to:

3

ph + Tp” + (l + ’-I-ne>92 + 2n,Tp + Qﬂe(l + 2‘%) =0 (105)



50 NACA TN No. 1430

vwhere
E 32 1 3 pRh°i32 1 3
TE e e {1 + =8, + 34 = O e —_—ll = 8, +

Because of the assumpt gnh (see appendix G) of a feirly high relestive
thickness t, of a blade St = éj, 1t must be assumed in the celculations

that the blade material is of wood. An average value of the ratio p/¢
will then be (for p = 0.0765 lb/eu £t, ¢ = 30 1lb/cu ft)

£ .
= = 0.0025

(For a hollow, bullt—up blede design the average density ratio may be even
somewhat smeller.) Hence, by using equation (77), the numerical value
of T 1s found to Ybe

T = 0.595 (106)

As can be seen from equation (10la), equation (105) can be readily solved
by writing it in the form

(pe + EnQ)(pa +Tp+ 1+ 2“9) =0 (107)
The solutions of equation (107) are:
ﬁ
+
Pp,p == \}2“3
: (108)
T
e =38 (en) [
-
These solutions, which are of the form
p=-R L1s5 (109)

heve, 1n accordance with eguation (¢9), the following physicel signifi-—

cence. The logarithmic decrement log —-B—;, defined as the logarithm
n+1 .
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of the ratio of the amplitude of one cycle to the amplitude of the
succeeding cycle, will be

A R
o = 2ftm— . . . (llO)

Angl Sy

log

The natural (real) freguency of oscillation q in cycles per second will
be

Q .
= -8 (111)
1= "t L

where  1is in radlans per second.

Thus, the solution (108) with the numerical data of equations (102)
shows thet in case A there wlll be two natural frequencies: namely,

Q
2n

ane = 1,005 cycleé per second

q & (14 n.) = 3.34 cycles per second
35 7 on °

The oscillations corresponding to the higher frequency g will be

very highly demped, the logaritihmic decrement being

log AAn =7 " I = 1,78
el 3,1]. + ne .

Therefore, despite the proximity of q3 n to the rotational frequency
>

él, the oscilletlions corresponding to q3 L (flepping) will, because
bid D

of the high damping, present no denger of resonance and will be qulte
stable, (In order to get a more exact insight into the influence of
resonance, it would be sdvisable to determine the retlo of thrust
fluctuation to flapping emplitude. Thls determinstion requires a study
of fluctuation of engine torque and speed. Thls gquestion of resonance
will not appear in the case (B) of appropriate kinematic constraint
between flapping and lagging.) On the other hand, the oscillations

3,k
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corresponding to the low natural frequency %4 5 (lagging) will be
practically undamped. ’

The ratio of amplitudes can be obtained by putting equation (108)
into equation (1002). Thus, corresponding to the complex fregquency Py o
3

I
Mgfe =
(E) .- B . -1.18 x 102(1 T 0.1811)
P 1tim\fon,

(Bquation (100b), because of the (nevertheless close) approximation for p,
would give zero.s Quite generally a complex value of F/D cen be
interpreted as follows: If _

= - +
P Re_isi

and if, correspondingly,

—=atbi

D
then, with the erbitrary amplitudes H, and H,, either T or B
(say, T) will have the form

T = e-Re‘V[B'l cos (Si\lf) + H, sin (Si’ip:l (1122)

and, from the amplitude ratio F/D, B will be given by

T = o Bo¥lar(y) + vL (v + = (112b)
251

vhere (V) 1is the expression in brackets appearing in equation (112a).
A ccmplex valus of a ratio F/D of amplitudes therefore indicates a
difference in phase between flepping (B) =and lagging (¢) oscille—
tions, the resl part giving the magnitude of the component of B in
phase with T and the imaginary part ‘the magnitude of the component

of B one—quarter of a period out of phase with T,
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Because of the actual small ebsolute wvalue of (F/D)l Py it is seen
s )
that the undamped oscillations, corresponding to the rather low natural

frequency (%)‘/21] o? will occur practically only ebout the zl—e.xis ; that
ig, only the lagging sngle willl osclllate.

Following from the complex frequency p3 I the ratio D/F will,
' s

from eq_ua:bion (lOOb), be -
E 1 6
— i l+ =8 =8_ + o _lp
3 b 2 ( 2 i)( c I> 3,4
()3 o~ Is® 315 2 = 0.01005 ¥ 0.02951
,

2
P 3’}4.4' 2‘]3

From the fairly small absolute value of the ratio (D/F)3 L it 1s seen

that the highly damped oscillations of the natural frequency —(l + “e)

will occur practicelly only sbout ths yl-e.xis s that 1s, practically

only the flepping angle will osclllate.

The results for both frequencies, implying that the lagging and
flapping oscllilations are practlically independent of each other, show
that the slow undamped lagging osclillation 1s very sensitive to dils—
turbances and that the high restoring forces In flapping have no com—
ponent which might oppose the lagging deviaetions.

Cese Ayt 6 TFixed, B Free, { under Friction Constraint

The wmnfavorable result concerning the lagging oscillatlion leads
to the attempt to improve the stabllity by introducing a friction con—
atraint acting on the lagging angle by means of a moment IE X(Q at

the root of the blade, where X denotes a constant of relative energy
dissipation the valus of which can be chosen according to the required
degree of demping. This constraint could be accomplished, for instence,
by a2 rod leading from the root of the blade to the hub and provided with
a telescopic fluld breke.

The term -K{ must then be added to the left side of the dynamic
equetion of the legging acceleration, that is, to equation (97c). Then
by the same procedure as before the amplitude ratios (see equations {100sa)
and (100b)), the frequencies, and the damping terms (see equation (103))
can be determined. It 1s considered sufficlent here to calculate only
the new complex frequency conslsting in the damping and the real-—
frequency contribubions.
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Instead of equation (105), the following frequency equation sppears:

ph + (T + K)p3 + (1 + bn, P2+ ene('l' + K)p + Kp
+ 2ne(} + 2ne) =0 (113)

In order to determine the effect of the constant K in generel..
terms on the demping and on the frequency, a simple approximate general
solution was obtalned by Newton's method based on the assumption that K
is smell, The flrst approximstion here was taken ag the exact solution
to equation (113) when the term Kp i1s neglected. This first approxi~
mation is then the same =8 the solution given by equetion (2108) with T
now replaced by (T + K). The second approximetion is then found to be
the following:

4Kn, E-[I:{—hne(T-r-Kﬂ}\Fq:

ti
A-T-K 1

P,0

EK-—h-qe('l‘-;-K):|2+8qe ‘:K—hne(T+Kﬂz+8ne
%(T + KA + 2(1 + 2n,)

2%+ (1 4 2n)

(T + K)
Pyu = | F

ii(l+ne) 1-

-

A% . h(? ¥ 2W;l1

(11ka)

where

_ (T + K)3

A +(T+K)(2+lme)+K

For an example, the same numericel date as eassumed in the preceding
section (see also appendix G) together with the value of K = 0,1 were
introduced. Eguation (1lhe) then geve the following results:

_—

P;,p = — 0.05 270.3191 L

(114D)

p

-t
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The validity of the spproximations given by equation (1llke) was
checked by putting the same numerical date into eguation (113) and

golving it exactly (by Ferrari®s method) to three signi’icant figures.
The results were:

pl,2 — 0.0525 + 0.3211

(11ke)
— 0.295 * 0.9721

P34

Comperison of equations (11lib) and (1llc) shows that with values of X
not apprecisbly greaster than 0.1 the comparatively simple formulas in
equation (11lha) are sufficilently exact for most practical purposes, so
that it is ummecessary to formulate an exact, but more involved, general
solution of the quartic equation (113) here.

~ The natural frequencies and the logarithmlic decrements corresponding
t0 the solution (1llhc) are (see egquations (110) and (111)):

q. = 1,01 cycles per second

q = 3.30 cycles per second
3,k -

log = 1,029
_An+l 1,2
A
A
1
3,0

whers, temporarily, A, dJdenotes a real amplitude.

The following conclusions for case Al can be drawn from these results

of the numerical exmmple. It 1s possible to achleve fairly high damping
of the lagging oscillations by Introducing moderate fluld friction.

This friction, moreover, will have little influence on the two values

of the naturel frequency and on the high demping which is associated _
with whaet originally wero practicelly the flapping oscillations. It
must be observed, however, that because of the low natural frequency
(ql o) corresponding to the lagging oscillations, the restoring force

in these oscillations will also be low, and may, in fact, not be
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sufficient to return the blade to its normel position. The dampling intro-
duced by the fluild friction would in that case be of no avall,

Case B: 6 Fixed, B and { under Kinematic Constraint

Tt has been seen (cese A) that with the pitch angle 6 fixed and
the flapping snd lagging angles B and { free, there will be the
disadventage of an absence of damping for lagglng osclillatlons. The
poasibility of overcoming this dimadvantage by introducing kinematic
constreints between the verlables will now be ilnvestigated.

Firet an appropriate congtraint between flapping and lagging will
be introduced. As previously explained, this constraint should be such
that the conditions of steady flight are not violated; that 1s, the
congtraint, as represented by an equation, should satisfy the condition
that when ¢ = {,, then B = B,, or when E=f{ =8, =0, then
B=8 -8, =0, This condition will not be violated by a constraint of

the form
g = KB (115)

wvhere K 13 a constant to be chosen in accordance with requirements of
stability and of avoidance of resonance. In order to achleve materially
such & constraint, a preadjustment of the angle B or the angle { 1is
necessary, For example, the lagging engle { mey pe presdjusted to a

value Cl’ where Cl is the valus of { when B = 0. From equation (115),

this velue is §; =€, — % B;.
Ag In cese A, the solution for B and g' wlll be of the exponential

form glven by equations (99). When equations (99) are then put into equa—
tion (115), the ratio of the emplitudes 1s obviously

% - K (116)

Condition (115) can mathematically be taken into account by means of a
Lagrange multipliex I‘m and = Lagrange function @, where s eccording

to equation (115),

g=f-xE=0 (117)
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The equations for D and F corresponding to equations (100a) and (100b)
then become:

E 32 1 3 o = =4
—F|T (P + 1+ )+p—-——l+—s +-n> +Dp°9. I + Iy = =0 (118)
@( Mg * PP a5\ 21 26] ¢ ImaB

F%zfe —p%:—ig +%sj>(§ec+ag]—DfH<p2+2qe>+Lm¥-0 (118v)

From equation (117),

and gﬁ = 1 (119)

Putting equations (116) and (119) into equations (118a) and (118b), and
eliminating 1'.."11 from these equations glves

(120)
+RE256 -p%a-s- +—s><59 +a>} (p +'2ne) =0

For equetion (120) to have a solution other then F = O, p must have
the values satisfying the equation

_p2€+ ng—eua I>— pat - E. + 2qe(l + n2>]= 0 (121)
Ty

where
E 32
a'=———— +§n)1+n(—-q><e+a
0PIy 315 \:
Hence, neglecting the quantities 2 &, L in comparison with (l + N2>

and also neglecting a'2 in comparison with 1#(1 + ne)[l + 2116(1 + K )],
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]
8, + 1
PR - 1~ +2q (122)
2(1 + ng) \A + K °

It may be cbserved that in thls case of geometric constraints, the drag
has a slight, but noticeable, effect on the damping; whereas in the
case of free osclllations, the Influence of the dreg on the damping
was negligible. TFor ordinery velues of K, +the damping will be gulte
largs, and the stability therefore very great. For example, if

By use of the same mumerical values as before (equations (102) end (103))
there 1s obtained

p=-0,1582%0,7751 (12k)

which gives a nstural frequency of g = -2-9- 0.775 = 2.47 cycles per secomi

end s logarithmic decrement (see equation (110)}) of 2« -0—-129 = 1,282,
0.775

From the point of view of stabllity this cese therefore appears quite

satisfectory because there 1s conslderable demping and there is 1ittle

danger of resonance from the drlve, thet le, from such probable dls-—

turbing frequencies as Q| = g_(_)_ = 3,19 cpa} or 20,
n

Case C: 6, B, and { under Kinematic Constrainmt

In the cases thus far dlscussed, the pitch angle 6 has been
assumed fixed., The effect of allowing a certaln freedom of pitch
change § in accordance with geomstric conditions (constraints) among
the angles 6, B, and { will now be considered. For this purpose,
constraints similar to that used in case A (equatione(115)) will be
assumed, namely,
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B =

oz (125)
=\

where A and p are constants which will he selected in accord with
stabllity requirements as will be dlscussed.

Solutions to equations (972) to (97c) will have the same form as
given by equations (99), namely,

T =B, Faove®, T =D (126)
From equations (125) and (126) it follows that

F = AB

(227)
D=wyuB

By putting equation (126) into equations (97a), (97b), and (97c), equa~
tilons of the following form are obtained:

M '9*:1
19
BPl.b + FPlf + DPl a= =
(419)
Myle"w o
op + FPpp + od > >. (128)
lee-p\lf
BP,.,. + P . +DP_ =
3b 3f 3d o
-

vhere P indicates polynomiels of second and lower degree in p. As in
case B, the constraint conditions (equations (125)) can be taken into
account by means of Lagrange multipliers Ly end I‘.mz and kinemstic

conditions ¢1 and @, wheore
¢1 = -[3- -2 =0

¢2”E"“§.'0
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thus, by using equations (127), equations (128) become:

"\
o) #,
BPlb+wH+uP1d)+Ihl§-+Lm2§:_=0
o, o,
| Bé2b+)‘P2f*“P2d)+I‘ml'aTg-+Ib25’-é'-_"°L (129)
B{P., + AP__ + pP..} + L E’il“_-, % 0
3b 3¢ ¥ H¥3d ml 37 ngg'"
»
where
P, N o, o8, ?, X, op,
=== ===y, =e2l=s= ===0=—
® 35 3B d 3B df

Eliminating Ly, and I,» from the three expressions of equation (129)
results Iin the following single equation: .. .. . . o

BEl'b + xPlf + BBy, + 7‘<P2b + APyp + |.:.2P2‘1 + p.(P3.b + XP3f + p.P3d>] = 0 (130a2)

The velue of is then determined by setting the factor of B 1n
equation (130.93 equal to zerc. Equation (1302) can hence be written as:

2
P + x(Plf + sz) + u.(Pld_ + P3b) PRE JRPAT ).u(P3f + Pad) =0 (130Db)

When the expressions obtained for P (see appendix H) are substituted
in accordance with the definitions (equations (128)) and the expression (78)
for .B,, &8 well as the geometric properties (equations (77)) of the blade

body, are used, equation (130b) becomes the following quadratic in p:
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1+ 8, + 29 c
R R e
0°I; 315 2 07T, 1o -
J 2 2 E 32 l)
+—+XQ""2‘1 + 2 U = A = il + =8 =0 (131)
I vy PN

where

2 12 &/ B
l+as c
JEE i ..."‘.‘.f_;[
Q 12

-With the numerical values consistently used in this report, equation (131)
reduces to (see appendix H):

:92+2alp+a°=0 (132)
where
o = 2 + ua)'l(o.299>.2 — 0,0068\ + 0.00126\1 — 0.0082u — 0.0008k)

8, = (02 + 42) (1102 ~ 0,560n + 0,142 4 0.00656)

The solution to edustion (132) 1is

pa—a.lii a.o—a.12 - (133)
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For stablility it 1s necessery and sufficient that the roots of equa—
tion (132) be either real and negative or complex with the real part
negative, These conditlons will be satliefied if and only if 2 and a

are both positive (or zeroc). The values of A and u can now be so
chogen thet these conditions will be satisfied. For example, if

(o]

A=0.7, =1
then the complex relative frequency p will be

p =—0,0882 * 1 x 0,103 (13%)

0,0882

= 20 radlens per second, & natural abzolute frequency of

0]
2 0.403 = 1,287 cycles per second., From the point of view of stability,

2n
case C, as well as cass B, 1s therefore satisfactory for hovering.

glving a logarithmic decrement of 2n = 1,370, and,with

OSCILIATIONS OF BIADE SYSTEM IN LOW-SPEED TRAVELING

The same assumptions in regard to the (first order small) value of
the speed ratio ug and the neglect of third-order terms, as mede for
the steady state in the section STEADY STATE IN HOVERING AND IN LOW-SPEED
TRAVELING, will alse be made in this section for the oscillations in
traveling.

General Explicit Equatlions

As in hovering, the oscillation equations (74) to (76) must be )
solved, except that now the expressions for 60, Bos and §° will be

not only different from the hovering valiues 6,, B8,, and Cc, but also

varieble, and Iin addition the equatlons will contain more terms than in
hovering. B} L ;

The expressions for 6o, B, end Co are given by equations (84)

with (96), (85), and (87). By using equations (35) to (37) and (49)
to (51) for the quasi—elastic and the demping moments and rejecting all
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terms smaller than the second order, the amic equations (74) to (T76)
E=— p ,'"cina as 1n the foregolng section ) become:

eIr"EOIzs"' BcIH"' -—) 35(24-5 + Tng + T sin*)

oy g ¢y
\;ﬁ +-5f§—(1.+2ne+2ue sin’b‘)

E@. +_si\ Cy E(l + si) Cy
=t = £ —0°E), + ——— —fu, siny

= T = T 7T ~E 32 1 3
echzs-Bé:ﬂ"'Iys)"' gecIla"F?z'gl—sl""e‘s)Q""E"e"'%”e sin9

M
-3—--l+--e>I!:(l+3u.e sin#)-—ﬁ (IE+Se)— é+-—s Euecosmlr=—'ﬂl
1 315
(135b)
= = S = = E 32 1
—BBGIH"'B I -C(IH“’IZB)'B 26 IH'"%_E(*?;Q(%%"“’;)
- - - M
+-§-§—5 (:.p+§-ec>e—§92Se=—§l - (135¢)

When equa.tions (135a) to (135¢) are compared. with the corresponding set
(squations (97a) to (97c)) for hovering, it is seen that both sets are
the same except for four addltional terms in equation (135a) for My

and three additional terms in equation (135b) for Myi' Fach of these

additional terms has the periodic coefficient sin ¥ or cos ¥(¥ = Ot)
but of relatively small magnitude, It will therefore not be necesgsary
in thls case to apply the theory of Mathisu functlons, but it will be
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sufficlent to use a method of successlve epproximation sterting from the
hovering state as a first approximstion. This mothod mey be expressed
by the proposltions

9=31+“e52’ 3=§1+“352’ E-=§-J.*"‘¢,§'2

The valldity of thils method of solution will be checked by the
results obtained by 1ts application, for It i1as necessary that these
results remein within the order of magnitude assumed in advance; that
is, in this case the terms proportionsl to ug (e.g., “952) muet not

be larger than second order smell, so as to be of a higher order small
than the corresponding hovering solutions (e.g. , 51).

Case At 6 Guided, 9 = 6o (¥V); B and § TFree

This case 1s the seme as case A for hovering, except that now instead
of keeping 6 fixed at the steady-state value 6, for hovering, the
blade engle 1s gulded so that at all times 6 = 855 Where 90 is =
function of V¥(=0tt) and therefore of the time and is given by equa~
tions (84) and (96). The deviation of @ from the steady—state values
willl therefore be zero, so that, as for case A In hovering,

8 =0

and only two equations, namely equations (135b) and (135¢), need be
congidered to determine the natural freguency and the damping.

Equations (135b) and (135¢) can be solved as indicated above by
writing the solutlion in the form

5. = O, E = El + “932) E = E.l + p'e ;2 (136)

vhere El and El are the solutions for hovering, which have alresdy
been obtained in the section OSCIIIATIONS OF BLADE SYSTEM IN HOVERING.

Inasmuch as equations (135b) and (135c) are a set of differential
equations of the second order in the two vnknowns F i, the
complete solutlion to these equationse must contain exectly four
arbitrary constants, which must satiefy eny given inltlal conditions

of pogition and velocity. Moreover, any solution conteining four
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arbitrary constants and setisfying equations (135b) and (135¢) will be
the complete solution of those two equatioms (if it does not violate
+the condition that the results remein within the order of megnitude
assumed in advance)., Now, from eguations (99) and (108),

- - X v
By = iFnepn*, £, = Fn'epn (137)

n=1 n=.

vhere Fn is an arbitrery constant, whereas Fn' is & constent depending
on F . Therefore, from equation (136), it follows that, to obtain a

complete solution for 73' and { in traveling, it is sufficlent to
obtain only a particular integral of the differential equations (138b)

and (138c) in the unknowns B, and '52. In obtaining a particular

integral it will be sufficlently exact to determine .52 end 22 to

only first—order small quantities, because in the final solution they
must be multiplied by the first-order small guentity up, and will

therefore yleld only second-—order smsll terms.

Thus, putting eguations (136) into equations (135b) and (135c),
dividing through by pgly, using the expression (equation (78)) for B¢,

and rejecting all terms smeller than the first order result Iin the
following equations:

= L g3 1 - 2 U8 E i -
"52"52‘—'1*5"1*%%)'329 "X l*?QEﬁlw”

Q315
By
+ — gin ¥ (136b)
Q
T, =0 _ (138c)

A particular integral of equation (138¢c) is obviously

EQ = 0O (139)

A particular integral of equation (138b) can be obtained by first
observing the following relations:
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—
= -d-'— = .d'_.
dt ay
1 ~1¥
cos ¥ = 9_1."'__9__ > (110)

2

oin ¥ = — i(eﬂr _ e-iv)

By putting equations (137) and (140) into equation (138b), the equation
for 62 becomess :

_ _ b p+1) ¥ oLV
By' + TRy +E2='Er< -%“e > Ty @‘”u’r)e(n ) +<l_ip‘96(n ’

2

n=l
(1h1)
where
= a _ E 32 1
' = T= E -3—1-5- 1+ gne + 595) = 0.595. (Cf. equation (105).)

A particular integral of equation (141) will be the sum of four pairs
of terms, each palr corresponding to a given Pne Thus, for each Py

CE?)n = Ane(pn+1) v, An'e<pn-i) ' (142)

The retios of the constants A, and Ayt to F, are readily obtained

by putting equation (142) into equation (14l). Thus, by writing
(cf. equation (109))

the value of Aﬁ is seen to be given by
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h An 1+ ip,

- 3T€.-%q6>:=(Pn+i)2+T(pn+i>+l
(1—sm)+men

2 2
I:Ren -<Sin+l> +'.['Ren+]Zl+1<E’»m+J)(2Ren+'1>

Rationalizing the dencminator ylelds

An'%"‘('%‘;rn'[é_sm)“ 1+1E~ l-smﬂ (1432)

c +D
where
C=R 2-(S +1>2+TR + 1
. en in en
D= (Sm + l)@Ren + T>
Similerly,
L(l-;-sm)c'-a n] - E c + (1+s )j_
%TT (143v)
ct2 4 pte
Wwhere .

C* =R _2 4+ TR +1-(s — 1)
en en in
' - -
] D <2Ren+T)<S! 1)

B Taking the values of Ren and Sin from the hovering solution (equa—
tions (108)) and the definition (equation (109)), and observing that the
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numerical calculations are simplified by the fact that,for n = 1,2,

Ron = 0 and,for n = 3,4, D =D* = 0, ylelds, for the numerical values

of An/F, end An'/Fn:

ﬁ
Al/ﬁ'la-a-bi, Ai'/Fl=c+di, Aa/lFenc-di, A2'/F2-—a.+'bi
}(1&#)
= ] = = -— ¢ - -
A3/‘F3 e + i, A3/F3 g + hi, AI/Fu g — hi, Ah/Fh e — 1
>

where from equations (143a) end (1h43b)
a=0,18, b=0,197, ¢ = 0.6k, 4d=0.486
e = 0,006k, £ = 0,0348, g = 0,947, h = 0.126

The numerical values of equation (1i4) show that 32 actually 1s a
First-order smell quantity (tha.t 18, of the game order of megnitude as El)

and that therefore the method of solution used here is valid, inasmuch as
Bp ealweys appeers in the form pB,.

The foregoing results can be methematically inmterpreted for each
palxr of conjugete values of P, @s follows:

With
Py =—RByy + 5443, Py =-R,; - Sy11

for example, and with &, b, _c, and d defined as in equations (1hk),
1t can be easily shown that (Bl)l , 18 of the form
E

_(El)l,a - o7t El,a(sﬂ*) (Lhza)

where
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Bl,g Srﬂ_\lf = H‘.L cose (511“’)" H2 sin <Sil’¥)

and Hl and E2 are consta.p:bs.
— It can be readily proved, moreover, that the additional solution
(8,); , Wwill then have the form

L .

- - 'll[ = | =
(62) =e ©l"|—aP (S +l,1lf)+cB S —l,“r’)
1,2 1,2\"11 1,2( 11

b1

+ 1, +——2<sil+1> ,

+ BBy 5|51

(Cf. equations(112a) and (112b))

Comparison of equation (145b) with equation (1h5a) shows that e
complex value for the ratio of amplitudes indicates a difference in
phese between hovering vibrations B_l and the additional vibratlons B,.

' Q Q

In fect, for each of the frequenciles (Sil + J>-2_n: and <Sil - -2—“,

('52)1 o consists in two components one—quarter of a period out of phase
3
with each other,

The physical significance .of the results can be stated as follows:
In regerd to the frequencies, equations (142) and (108) show that one
new frequency 1is added which is practically double the frequency of
rotation £, Three other frequency roets sppear whlch, however not
significantly different from the frequencles of the roots /211 2= and

Q € 2r
(l + 17 )—- of hovering.

The edditional emplitudes given by equation (1lhk) in terms of the
emplitudes in hovering, and depending on initilal disturbences, are small
in comperison with the hovering amplitudes, as long as the velue of He

is small, This result, in fact, is the proof that the method of integra-—
tion is consistent.

The logarithmic decrements remain practically wnchanged in the
transition to traveling, and the solution corresponding to the frequency

2. which hes no demping in hovering, therefore is still very
2“9 2;1’ .

sensitive against disturbances in the transition to traveling.
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Cage B: 6 Guided, B and { under Kinemastic Constraint

It was seen that in case A of traveling there is the same danger of
lack of stabillity dus to the ebsence of damping as in case A of hovering,

Case B of hovering with an appropriate kinematic condition between

f and  made it possible to obtain better damping end also frequency
values of no resonance danger. Whether a device of the game kind will
serve the same purpose in traveling will now be determined.

For cese B of u, # O with its kinematic constraint between B and

¢ it will also be advisable to avold mutusl bending moments in the con—
gtraint mechanlsm in the steady state of motion by a preadJustment

Bpr = ([3)§.=0 or cpr‘; (Q)Bao' (During the oscillation, however, such
mutual moments, though small, can ageain not be avoided.) Such a pre—
ad justment for the case of travellng must, however, be periodic, as can
be seen by the following considerastion. The kinemstic condition mey
again be expressed by

Tanp or £—t =x(p =5 (146)

where & 1s a constant and {,(y) and B_(V¥) are periodic functions

of the angle of position V¥, given by equations (85) and (87). From
equation (146) it follows, then, that the preadjustment must be

Bpr = Bo — TQQ or (equivalently) gpr =€ - kB . Some meens, for

instance, a cam plate, will be reguired to enforce such a periodic condition.
The constraint (146) can be treated, as in the case of hovering,

by means of a Lagrange multiplier L, Thus, equations (135b) and (135¢)
become: ’ '
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Eliminating L, from equations (1470) and (14T7c) and thus obtaining a

single equation, expressing [ by B according to equation (1i6),
setting

B o= By + BBy (148)

where El is the solution for B 1in hovering (ue = 0), rejecting terms
smeller than the second order, and finally dlividing through by “eTH

result in the following differentiel equation for T3'2:
] L .2 = 3
- By(1 + K2) = Thy — B0 = % TQ. - %%)(Bl sin ¥ — B, cos \V) (1k9)

where T 1is as defined in equation (105). It will be observed thast
equation (1L9) 1is simila.r to equation (138b) of case A except for the
coefficient (1 + k°) of '52 in equation (149) and for the fact
that Bl mist now be teken from case B of hovering instead of from
case A. Thus, from equations (99) and (123),

RS (150)
1= 2

For a complete solution for B 1t is sufficient, as explalned in
the previous case, to obtain only e particular integral of equation (1k9).
This particular integral can be obtained in the same manner as shown In
case A for equation (138b). Thus,

Ee = Aqe (P'j""-i) v + Al'e (Pl-i)v + Aae (pa+i) \lf + Ae'e (pa—i) Y (lij_-)

where A must be determined in terms of F, by subgtitution for 82

into equation (149)., By use of the expressions for sin ¥, cos ¥,
and. Bl (equations (140) and (150)), equation (149) can be written in

the form (cf. equation (141)):

(1...»@)'52" By T"’Ba"é‘r( —-n) @ + ipy)e (P +i)w(l_1p) (ea¥
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When equation (151) 1s put into equation (152), is is found, for
K=l
(wvhich geve satisfactory results in regard to stebility in hovering), that:

[l-s C+R D:]+1ERC—1—S ]
O -

02+D2

Ap = (153a)

where

c=2Ren2+TRen+l_2<S1n+l)2
Da(hRen+1>(Sin+l
1+ 8 C-—R D]—-iLC' 1+8 Eﬂ_
An'=%T€.-%qe)F -L( 1o R (153b)

ct? & p1?

where

ot = 2R6n2 +UR_ 4L =2 (sin — 1)2

DY - (”Ren . T)(Sin - )

With the valveas of Re'n end Sin given by the golution (124) for
hovering, equations (153a) and {153b) yleld the following results:

A= Fi(—=a + bi), At = Fl(c + dai)

(154)
) A2 = F2(C - d-i).v A2' = FE(- a_— bi)

vhere (from equations (153a) and (153b))
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a=0,0175, b = 0,01245
o = 0,860, d = 0.0678

These results cen be physicelly interpreted in a manner similar to
that in case A, TIn the transition to traveling, two new natural fre-

quencies are added to the frequency O0.7T75 -29— for hovering. These frequencles
b1d

are (1L + 0.775) == and (1 = 0.775) == or 1.775 ~- and 0.225 2,
2n 2r 2x 2x

Neither of these frequencles appears to present any particular danger
- of resonance, which might otherwlse be caused by excliting disturbances
heving 2 frequency commected wlth the frequency of rotation, that 1s,

a multiple of e The damping decrement, moreover, remains practically

the same in low—speed traveling as in hovering (log decrement = 1.222),
and this means that the rotor system will remaln quite stable in the
trangition to traveling.

From the fact that the values a, b, ¢, and 4 in equations (153a)
end (153b) must be applied with the small factor ke in accordence

with equation (148), it is seen that the sdditional amplitudes in the
transition to traveling are again small in comparison with the amplitudes

in the state of hovering. Thus, it appears that case B (of conetraint B, §)
remains satisfactory in the transition from hovering to traveling.

Case C: 6, B, and ¢ under Kinematic Constraint

This case has (as in hovering) the practical advantage over the
others in that the blade angle need not be gulded but will automaticelly"
adjust itself to the proper value to support the welght of the heli-
copter, The seme constrelnts for B =snd { as in hovering will be
assuned here, namely :

- (155)

where A\ and u a.mcoqs‘bants.

These constralnt conditions can be reallzed practically, for a
correct pltch-angle function 8,, by means of a varisble preadjustment

of the angles B and . This preadjustment is given by
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Bor = (B)y_o = By =28,

(156)

¢

pr (g0 = bo =

These presdjustment valuss can be found explicitly by substituting the
expressions for 6, B, end g given by equations (84) with (96), (85),
and (87), respectively, °into equa.tion (156). They will appear in the form

Bpr = fl + ue(fg + f3 ein ¥ + flx. cos ‘#)

Qrfd1+ue(d'2+d3 sin ‘[f_-f-dncos ‘Jr)

where f and d are constents found from eguations (84), (96), (85),
and (87).

Thus Bpr and g will be fairly simple functions of the anguler

posltion ¥ of g blad.e s and can be materialized 'by, for example, a cam
plate.

The stebility of the rotor system with the constraints (155) can be
consldered in the same manner as case C in hovering. Thus, using
Lagrange multipliers Iy; end L, and denoting by D,(T, B, L, V),

Dy, e@nd Dy the left-hand sides of equations (1352), (135b), and (135¢),
respectlvely, ylelds, for these equations:

- - o 3,

D, (5,5, T, ¥) + L, 39-'1' + Lyp 2 = (1572)
) ¥,

(8, B, C,v)+Lml-a-B—l-+I-m25-.§—-0 (157b)
B, B

D3(F, -B-, E, *)-‘-Im-gr—i-Lma&_:a-Ho (1570)

where ¢l and ¢2 ere the functions given by equations (155). Substi-—

tuting the velues of the derivatives of @, and @5 solving for La

and L, by means of equations (157b) and (157c), and then substituting
into equation (157a) yields the following single equation:
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(P
D1+7\.D2+p.:D3=0 (158)
By taking the expressions for Dl, De, and. D3 from the left-hand
sides of equations (135a) to (135c), eliminating B and { from
equation (158) by means of equations (155), setting
6 =06, +ub, (159)__
where © = 5'1 is the solution of equation (158) in hovering, rejecting

all terms in equation (158) smaller than the second order (remembering

that ug

by He Iy the following differential equation is obtained for 6,

is assumed first order amell), and finally dividing through

13 —-— 92 El -;-l - W
oy | ]
92a2+92a19+92a.° a_-f—H- -Fbl"'glb gin ¥ + 8,b_* cos ¥
>(160a)
Eil+ s c
B = ._i.
1 12 R
.
where T
I
&2=="'<)‘2"'”2)
Iz
R N - VA SN sae(l e o) =222 - E (1 -2 43
i LN " 135\ 21 29
Ef T g(lGOb)
I S - TN E2<1+§Bi)_x2 |
’an Iz 315 Ian
C
bl=ﬂ-i ONF — ).12—(-
35 R 315
32 R
D = - ——
o =M = —si)36
R
b »2 48 —-]=s> 12 -
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The expression for b'l is

2
= 2 B e’wr (161)
n= n

where p 1s given by equation (133) and B, 1s an arbitrary constant.

As already explalned In cases A and B, it 1s sufficient in solving
equation (160a) to obtain only a particular integral of this differ—
ential squation, and this Ilntegral can be obtalned in the sems manner
as in cases A and B. Thus, by using equation (161), noting that V = §t,
and also noting the expressions (1L40) for sin ¥ and cos ¥ as expo-
nential functions, equation (160a) mey be written in the form

d \.
vhers ' =— )¢
av

2 E P +1)w
8'292 + alae' +ab, = n-z- 2!12fH E(pnbl - bo) + boﬂe

" E(" PPy * B) + bo:J ° &) (162)

As In caeseg A and B, set

i Ene(l’n"'i) v . An.a(pn_i)ﬂ (163)

where A, eand An' must be determined in terms of Bn by substitution
of equation (163) into equation (162). Thus,

. . ElB bo' + 1(p50y = by)

SR VAR

(164)

By putting p, = Ren + isin’ -the following expresslon for An can be
readily derlved from equation (164):



where

Simllarly,

whers

& blsin)c + D(bl on j +1 [EblRen-—b)c + D(S

c

C + D2

D=(Sm+])(232+aj)

2 2
aERen + a'lRBD. + 8.0 - &E(Sm + 1

°j- (1650)

D'E

[('b +'blSm)C'—D( _ ﬂ—-i(blen 1:0)c'+1)'(b'+hs111
et I )

0'2 +

(165b)

OSHT °*ON HI VOVN
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Tor the special case that was treated in case C (hovering), which
gave satisfactory results in regerd to stability, the values of .
and u were btaken to be

A =07, =21

With these valuss of A end u and with the numericel data (swumarized
in appendix G) which have been consistently used in this text, the values ]
of the constants appearing in equations (165a) and (l65'b) are, in accord.ance

with equations (160b), found to be: =

ap = — 1.h9, a, == 0.280, a, =-0.108
by = =155, by =-—13.22, b ' = - .63, 2_1,;92 = 0.0k17 ]
From equation (134}, P, 1s given by: |
p, = — 0.0882 X 0,4031
Hence Rgy =R, = — 0.0882, Sil = 0,403, and 512 = — 0,403,

Suhstitution into equations (165a) and (165b) leads then to the following
results:

-
= — - —
Al .-Bl( a + bl), Ay Bl( c + di) |
B (166)
AE = 32(— c -_di_), AQ' = 32(-— a - ‘_oi)

J

where
a = 0,102, b = 00,0372

0.308, 4 = 0,0695

Q
[}
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As explained in cases A and B, the fact thet the amplitude factors of 52”9

are of the same order of magnitude as the amplitudes in hovering shows
that the method employed here of dbbtaining a solution in traveling is
valid.

The results can be physlically interpreted asgein in a menner gquite
analogous to that in case A and in case B. Two nsw naturel frequencies

appear in eddition to the hovering frequency 0.403 -22-, nemely,
7t

(1 + 0.403) EQ- and (1 - 0,403) 59-, neither of which appears to
7t T

present any particular danger of resonance. The damping decrement
remains essentlally the sems as in hovering, and thls shows that the
system In case C will be equally stable in low-speed travel and in
hovering. The netural modes in this case can be expressed anslogously
to the relstions (equations (1h5a) and (145b)) of case A (traveling).

CONCLUSIONS

Following the geometry, the statics, eand the dynamics of the motion
of & hinged blade system, the paremeters of pitch angle 6, flapping
angle B, and lagging angle { in the hovering and the traveling (that
is, forward, backward, and sideways) steady state of flight were deter—
mined, The geometric part of thisg problem, particularly for the case
of traveling, consisted in the determination of the angle between the
direction of flight end the zero-lift lines of the blede sections, which
are rotating on a conical surface the axis of which is tilted toward the
direction of flight. Thls involved the determination of the components
of the relative inflow velocity both in the planses of the cross sections
and in the direction of the blade axis.

The Influsnce of the 1nduced Inflow on the total inflow veloclty was
calculated only in regard to the directlion of thils total velocity, and
the always very small induced changs of magnltude of this resultant velocity
was neglected., The three-dimensional Kutta—-Joukowskil theorem was then
applied to the calculetlon of the lift-force vectors and their periodic
deviations from the-plenes of the cross sections. In this way the velocity
components both along a blade axis and in & plane perpendicular to the axis
were talen intc account in the vector product T XV, whereas the value of
the circulation o' was determined by the transverse velocity component
only. In all previous publications the radisl (blade—axis) component of the
velocity hed been neglected. R

The pitch angle 8 wes expressed for hovering as a constant
depending on the total welght of the helicopter and for traveling as
a fractional function in terms of the flrst and secqnd powers of the
speed ratlo u,, of the sines and cosines of the circumferential
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angles ¥ and 2¥ of blade position, and of the acceleration of the
flapping angle B.

Although the effect of the induced downwash on the 1ift forces has
not been treated explicitly, this effect can, in accordance with the
assumptions mede in the present anslysis, be consldered to be conteined
implicitly. The induced angle a.i, in fact, as glven by equation (15)

can be written in the form oy = -;- o, Therefore, if substitution of

(c - a.i) for o is mede in equation (7), glving the magnitude I' of

the circulstion, It follows that the effect of the induced angle on the
1ift loads will gimply diminish these loads by a constant factor, L4/5.
The numerical results glven In thie anslysis will then actually remslin
unchenged 1f one assumes the gross welght W of the helicopter to be
four—fifths of the value originally assumed,

In the derivation of the steady—state values of the flapping and
lagging angles based on the equilibrium of moments about the hinges,
the inertia moments of the angle accelerations &, B, and ¢ also had
to be taken into account for the case p ® 74 0. The damping moments pro—

portional to 8, B, and ¢ were also considered. This required the
integration of differential equations in order. to determine in the mection
STEADY STATE IN HOVERING AND IN LOW-SPEED TRAVELING the steady—state
values of the blade—posltion angles.

The forces and momente due to small oscillatory displacements,
velocities, and accelerations, necessary for the analysis of small
ogcillations ebout a state of steady motion, were determined in the
section INERTIA FORCES AND MOMENTS AND EQUATICNS OF OSCILIATION. The
Inertial moments especlally were expressed by meens of the moment of
momentum vector, and the Coriolis forces were obtalned by the use of
a rotating reference system, In this way, the complete system of the
equations of small oscillatlons about a state of stesdy motion wes
established (equations (74), (75), and (76)). In the hovering state
this system of differentlel eguatlons has constant coefficlents but—
in the traveling state the coefficlents have periodlc additional terms.

The integretion was performed first in generel terms, with results
for frequencles, logerithmic decrements, and emplitude ratios glven by
gsimple formules., These results were then applied for the following set-
of plausible numerical design data., TFour different cases in hovering and
three corresponding cases Iln traveling have been dilscussed:

Case A, Pitch angle 6 fixed, flapping angle B and legging angle ¢
freas,

Case Ay. Pitch angle 6 fixed, flapping angle f free, lagging angle 4
constrained by fluld friction (dashpot).
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Case B, Pitch engle 6 fixed, B end { connected by a frictionless
kinemati¢ constraint,

Case C. 6, B, end { externally free but intermally comnected by two
(frictionless) kinemestic conditions.

The mumerical date for these cases were sssumed as Follows:
Total weight W = L4000 pounds

Tip redius R = 25 feet
Rotational gpeed & = 20 radlens per second = -22-9
]

=(3.19 cycles per Becond)
/i -8 1/2

Chord ¢ = Cy4i s ©Cy = %5- feet

l—s8

Number of bledes n = L
r
Inner cross section of blade at ;:& =8y = 0.2

Hinge eccentricity % =17y = 0.05
Thickness ratio of cross section of blade ;‘i = Constant = %
Average density ratio of air to blade material £ = 0.0025

Q

Parasite drag angle ap = 0.02

In case A it was found that the oscillatory motion of the rotor
system can be considered as consisting approximetely of oscillstions of
onty the flapping angle £ and of independent oscillations of only the
lagging angle §. The natural frequency of the flapping oscilletions

=2 =
is 93,y = o (l + "e) = 3.3k cycles per second. Although this frequency

is quite close to the rotabionel frequency EQ- = 3.19 cycles per second,
b4

'l;here will be little danger of resonance because of the high logarithmic
decrement, namely =T/(1 + n,) = 1.78, associated with the flapping

oscillation.l The lagging oscillations will have the low natural
frequency q = AL ,/21-1 = 1,005 cycles .per second but will be
1,2 on ©

practically undamped, and therefore sensitive to disturbances. Inasmuch
as the Tlapping and lagging oscillations are practically independent of

lfor definition of T, see SYMBOLS.
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each other, 1t follows as pleusible thet any phase dlfference betwesn
lagging and flaepping which might arise on account of a separation of
the flapping hinge from the lagging hinge would be guite small. It
can, moreover, be observed from the formulas that both the natural fre—
guencies and the logarithmic decrement are only sllghtly affected by
the location Mg of the hinge, especially in flapping.

In case Al, the stabllity of the lagging oscillations of case A

is very much improved by the Introduction of fluild frictlon, producing
a demping moment kIHQ§ at the root of the blade; k 18 a constant

of relative ensrgy dlesipation which may be adjusted to sult regquire-~
ments of operation. For the cese of k = 0,1 1t wes found that the
new natursel frequsencles will be practically the same as those 1in case A,
whereas the new logaritimic decrement corresponding to the flapping
oacillationas of case A remalns practicaily unchanged. The logarithmic
decrement corresponding to the lower natural frequency, however, is now
no longer zero, but fairly high. The numerical results for the natural
frequencies and logarlthmic decrements were:

A
@y 5 = 1.0l cycles per second, log —_— = 1,029
’ Pne1
1,2
A
q3 L= 3.30 cycles per second, log X = 1,91
’ An.+1
3,4

For any other values of k and any other numerical datse, the resultis

can be obtained by determining the complex frequenclese p from elther
the biquadratic equation (113) or the approximate general solution (114).
The logarithmic decrements and natural frequencies can then be determined

directly from equetions (109), (110), end (111).

Because of the low netural frequency, with the consequently smell
restoring forces, of-the independent lagging oscllletilons, the friction
damping may prove insufficlent for stebillity. As will be seen In the
following ceses, however, the damping cen be successfully enforced with
an appropriate kinematic constraint between, for example, legging end

flapping.

Case B was worked out in detalill for a kinematic constraint
(geometric condition) of the form

£ = xB
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where &k 18 a constent for small oscillstlons, In cases B and C the
method of Lagrange multipllers has been used to satisfy such geomstric
conditions. These multipliers also have a physical significance, for
they glve the forces acting In the constraint commectlons.

With such a constraint there will be only one natural frequency.
(See equation (123).) For k =1 and for the foregoing numerical data,
the nstural frequency of oscilletion was found to be 2.47 cycles per
second, with a logarithmic decrement of 1.282. Fram the point of view
of stebility and avoidence of resonance this case appears qulte satis—
factory. For any other data, but for the same form of constraint condi-
tion, the frequency and the damping can be determined either by solving
the quadratic equation (121) or by substituting in the approximate
general solution to this equation (equation (122)).

It may be noted that in cases A, Al, and B the serocdynemic loads

had practically no influsnce on the natursl frequencies of oscillation,
As may have been expected, moreover, the natural frequencies are only
little affected by the demplng terms,

Case C has the advantage that here the piich angle f 1s aubo-
matically controlled. The two constraint conditions were assumed to
be of the form

E = x?, E = u§

wvhere A and i are constants. This condition could be reasllzed by a
pread justment of flapping and lagging angles to the followlng valuves:
Bor = Bg =45 & = 6, —wOg. The method of Legrange multipliers led

to the quadratic equation (131) for the complex frequency p. This
equation can be used to determine p -for any glven data. For the
preceding deta and for

A=0.7T, =10

the natursl frequency of oscillation was found to be 1,287 cycles per
second, with a logar;thmic decrement of 1.370. These results appsared
auwlte satisfactory in regard to stabllity.

It may be remerked that in the formmlas of all the cases treated,
the drag terms (induced plus parasite) had only e small influence on
the stabillity characteristics of the rotor system. This shows the lack
of necesslty of determining the asrodynamic drag any more exactly than
by the simplifying assumptions made in thils analysis,
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The differential equations of oscillation for any finite conetant
value of the speed ratio u, remain linear, as in hovering, but they
now have variable coefficlents (perlodic in V¥, 1.e., in 0qt) instead
of constant, In order to investigate the gtabillty conditlions In the
transition from hovering to traveling, the speed ratlo ke Was agsumed

to be a first—order small quentity. Bolutions Lo the differentlal equa—
tions could then be obtalned by using the solutlions In hovering as a
first approximation and then meking the corrections in accordance with
the consistent procedure used in this report, that ls, neglectling terms
smaller than the second order. The ccrrection In each case conslated

in the addition of & particular integral of & non-homogeneous linear
differentiel equation with constent coefficlents. These additlions were,
in all cases treated, found to be small in comparison with the corre—
sponding solution in hovering. (A general development in powers of
larger i, but <1 might elso prove comvergent.) Cases A, B, and C

of novering were by this method treated for low—speed traveling, with
the following results.

In cese A, the solution was found to be of the form

6'—'0, E=Bl+l~le-ﬁ-2, § =§l

where EJ. and E.I. were the solutlons for csse A 1n hovering. In
accordance with eguations (99) and (108}, El hed the form

R W,
B, = F e
1 i n

where Fn was an arbitrary constant. The expression for 73'2 wasg
then found to have the form

A [l p o]

where An and An' are constants which depend on Fn, gilven in general

terms by equations (143a) and (143b) and for the numerical example by
equations (1luk). The physical significence of these results is that
four new natural frequencies appear, cbtalned by adding and sl.}})tra.cting

Q/2x to and from each of the two natural frequencies . /2113 P and
Tt

(l + "le) 5& in hovering. Tt can be seen that three -of the new frequencies
ﬁ ;
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will not be significantly different from the hovering frequencies, dut
that one new natural frequency appears which is approximately double
the rotational frequency Q/2x. The expression for [32 also shows

that the logarithmic decrements remain unchanged in the transition from
hovering to traveling. Therefore the solution which indicated no damping

in hovering corresponding to the frequsncy /21] o 2—9- still indicates a
. T
danger of instability in low-gpeed traveling.

In cage B, the constraint condlition wes again sssumed to be of the
fTorm

T=xp

Ags in the previous case, the solution for B was of the form

where B is the solution for case B in hovering. From eguations (99)
(122) B is of the form

- 2 pnﬂr
By = F e
1 ; n

The angle 52 was then found to he of the form

[D*ne (p +i)‘dr + A te (Pn-i)\lf

where A, and A,' are functions of ¥, &lven by equations (1532)
and (153b) in general terms. For the numericel example, A.D/Fn and
An'/F are given by equations (154). The expression for B, shows

that two new naturel frequencles are ad.d.ed. to the i‘req_uency 0.775 £ for
2n

hovering. These fregquencies are 1.775 o and 0.225 —, nelther of which
2r

appears to present any particuler da.nger of resocnance. As In cese A, the
damping remaing the same as in hovering; that 1s, the logerithmic decrement
remains 1.282. This indicates setisfactory stability in the transition to
traveling.

In case C, the two kinematic constraints were also assumed as in
hovering, namely,
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E = X-Q-, g- = u§

Proceeding as in the two previous cases, the solution for & was assumed
in the form

§=el+uee

where &.

5 was the solution for case C in hovering, and was given by

- 2. Puv
6, =) Be
e

The constant B, 1s arbitrery and p, 1s given by equation (131) in

general and by equation (13%4) for the numericel exemple celculated.
Then 92 was seen to have the form

/ ¥ -
5, =5 Ene(pn+i) . An,e(pn 1)¥
n=1

where A, and A,' are given as functions of Bn by equation (165a)

and (165b) generally, and by equation (166) for the mumericel example.

The expression for 62 again shows that two new natural fregquencles

appear in the transition from hovering to traveling and that these

cen be obtained by adding (algebraically) * -2%- to the hovering nstural

frequency. For the nmumerical example treated (A = 0,7, u = 1), the

hovering frequency was 0.L403 '29" and the two new frequenciles in low—
b1

speed traveling are therefore 1.403 -23- and 0.597 éﬂ- cycles per
i

4
second., The logarithmic decrement, as in cases A and B, remains the
game as in hovering, namely 1.370 for case C. Thus the systen appears in
this case to remain quite stable in the itransition from hovering to
traveling. T : 0

Tt will be observed that the effect on the hovering osclllations
of the trensition to traveling is essentielly the same for all the
cages treated.

In regard to the reaction of the blade system on the fuselage and
to the strength of the hinge structure, the question of externsl end
internal forces arising from the effect of externmal or intermal constralints
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1s of interest. The external comnstraint moment caused by the fixstion
of the pitch angle was glven by the static and dynamic equations of the
€ component, whereas the Internal constraint moments acting on the
linkeges between the hinge axes were given by the Lagrange multipliers
of the derlivatives of the kinematic conditlons, Simple preadjustments
were indicated between the angles 6, Bo, and. §°, by which the

steady-state Internal moments cen be eliminsted,

In thls paper the problems .of verticael climbing, inclined travel
direction, large speed ratios, disturbing extermal forces, and elastic
vibrations have not yet been dlscussed. These problems can be solved,
however, by the baslic geometric, static, and dynamic procedure presented
and by the introduction of the appropriate Inflow veloclties and inertla
forces.

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., May 5, 1946
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APPENDIX A
VELOCITY COMPONENTS IN PIANE OF CROSS SECTION OF BIADE

By definition of the blade angle or pitch angle &, the line °q

of zero lift makes en angle of & with the 1line h, where h 18 perpen—
dicular to the z—exis and to the blade center line »r. ILet 1, m, end n
denote the direction coslnes of any line with respect to the x—, y-, and
z—axes, respectively. Then, from figure 1, the directlion cosines of r
are:

o~
n

cos B cos ¢

B
"

—cos B sin ¢ ~ (A1)

nr=sin8

»

Moreover, the dlrectlon cosines of line h, which lies in the xy-plane
and 1s perpendicular to the projection of r on that plane, are:

-

'I.h=—sin§
mh=—cos§F (a2)
oy =0

The direction cosinss of «:;l can now be determined as follows: Since

cq is perpendicular to r, i1t follows from equation (Al) that

lcl cos B cos Q—mcl_ cos Bsin§+ncl ginB=0 (A3)

Also, since the angle between ¢, and h 1is 6, 1t follows from egua—
tion (A2) that :

COS 6 == 1 gin { - m_ cos Al
op o1n L —m, cos ¢ (ak)
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Moreover,

202+m012+n 221 (a5)

1 C1

Equations (A3), (Ak), and (A5) can be solved for the three unknowns 1.5 MW, ,

1 ‘%
and ncl. For example, m°1 end n°l can both be put in terms of l,. by

1
means of equations (Alk) and (A3). Substitution into equation (AS) then gives
a quadratic in 'l.cl. The results are: ( &

1, =—cos @ ein{ * sin B sin 9 cos ¢

Moy cos £ cos & ¥ sin B sin @ sin § (a6)

ncl=+cosBsin9

-’
The lower alternative signs in parentheses, which really msan replacing 6
by -6, must be rejJected, because, as may be verifiled later (cf. equa—
tion (10=2) for Lz'), they would glve negative 1ift in hovering. To

second—order small quantities, assuming in addition to relations (4) that @6
is first order emell, that 1s

<1l

equation (A6) cen be written as:

zcl=-§+Be

2 4 g2
mcl=-'é""§——é—"'>> (A7)
ncla—e J

The componsnts Vcl and V, in the direction of c; and in the direc—
tion of n normal to o7 and r will be: '
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Y =V7.1+Vymcl+vzncl

? (28)
V. = szn + Vym.n + Vznn

ar’

All guantities in equation (A8) have already been obtained except the
directlon cosines of n. These can be obtained by considering n as
the vector product of unit vectors o /°l and T/r, inasmuch as n

is perpendicular to both c.- and »r, Hence

1

Zn = mclnr - mrncl

m =n 1.-—n1 (49)
n cl r nr cl >

R

J

From equations (Al), (A7), and (AS), the direction cosines of n are
found to be:

lp=—B=t0

mn=—9+t3§ f (A10)
2 2
nn=l-B + 6
»

By putting equations (5), (A7), end (A10) into equation (A8), the expressions

for vcl and V, given by equations (8a) and (8b) in the text are

obtalned.



RACA TN No. 1430 91

AFPPENDIX B

DETERMINATION OF LIFT COMPONENTS

If it is assumed that the circulation vector T 1lles along the_
direction r of the centerline of theblade, the vector product T XV
(equation (6)) can be written as follows:

It = QFE(vynr - 'V'zmr) + 3,2, - Vxnr) + kQ‘xmr - vyzé‘ (B1)

Therefore, from equations (5) and (Al), the 1ift components per unit
length will be:

-
I’x' = —prmgl + M+ 1 sin ¥)B + uyE_]
Ly' = —-pf'ﬂ!‘E(‘y - B cos ¥) - B;] >(32)
o 72+ B2+§2
I.z'=p1"9rl+n—B +pb cos¥ + uil = sin ¥
2 )

By substituting the expression (9b) for the magnitude of I, equations (10a’
of the text are obtained. '
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APPENDIX C

EXPRESSIONS FOR HINGE MOMENTS

The Moment Mxl

The first term in equation (22b) for the moment M, can be expressed
by the use of equation (8a) for Vcl and equation (18) for c. Thus,

R Voo \2
] 3 2 l1—0g c1
24,’11 ar Oy _ 02V 2 o7 acf as 2= y (—_QR) (c1)

where

Vo \2 '
<?-B-=1-) =g+ 2s(ue sig ¥+ ng + ut cos *)

+ %uez(l - co8 2V + 2;_ gin 2¥) + Pugn, 8in 1 2 (c2)

to first—-order small terms.

Putting equation (C2) into equation (Cl) and integrating gives

1 Vo, 2 2 '
f as 222 <c-l> =l+s;i~,+81 +(l+51)(“e51n*+ﬂe+ue§ °°E¢)
8

" 1-sy QR
(l + si)(l + 512)
I

+ j-z'uee(l - cos 2¥ + 2¢ sin 2¥) + 2u ng s_in v -

2
_5. 1+ 8y + 512)(“3 sin ¥ + ng + “ec cos *)

l+si 5
__.._.E_.—.Eze (1 = cos 2¥ + 2§ sin 2V) + ’”‘"ef'e sin ¥
=j‘_—2- 1+ 8y + hne+3u62(l-si)+l!ue(l+si "'3“0) ein ¥

+ el cos ¢ + @fg sin 2 "3“32@ - si)cos 2#] (c3)
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when higher powsers of 84 than the first and products of
gquantities are neglected. .

8y and smeller .

From equation (10b), the second term in eq_uation (22b), to first—
order small quantlities, becomes:

R
ff L'cdr-fupr? d.rr202(l+|.l.sin\y)[9+p.(l3cos1r+esin\k-7]
ry
(ch)

where

cg ac

Substituting equation (18) for c, equation (C4), in the dimensionless
variable s(s %), becomes:

R 1
ff th c dr = fﬂpQER3c12f as i-s (a + Hg sin 1!)[98 + ue(ﬁ cos ¥
8 1l - 84

ri 5

+ 6 sin ¥ - 7)] = f ﬂpﬂQR3c12 1%(1.4- si) - Mg %(l + si) + ue[%'-é + si)e
_':_e 7@. - SD:[ sin ¥ + -g@. + si)"*e cos V¥ + -%e-gé. —- sj>,‘3.sin 2v¢ |

B2
+ TQ_ - si) (1 — cos 2¥) (c5)

Addition of equatioms (C3) and (C5), together with the third term
of equation (22b) yilelds the expression for M., given by equation (320a)
in the text.

The Moment M'yl

By use of equations (10b) and (18), the first term in the expression
(equation (23)) for M, can be written as follows, to first—order small

quantities:
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R 1 ,[ _
..f Lz'rdr=-ﬂp92Rhcif - g [6+su(BcosW+eesin¢..7)
8
1

:c'i l-s

+ suee(B cos ¥V + 0 gin ¥ - y) sin a (c6)

The integral in equation {C6) can be evaluated by means of the change
of variables

l-8=1u, ds =-—2u du, s=l—u2

and the result is given by equation (3la) of the text.

The Moment MZ 1

The moment M_, as given by equation (28a) will be second order

smell. Hence 1t 1s necessa here to use terms of the second order,
From equations (10a) and (13,

o & 2
2
'.T.,:’,l'-l-Dyl'=--;:,«_,c92r2 - +—-+u (y-Bcosw)+a.(A+esinir)
A?
+--A6]+p, (7-Bcos\[r)+——sin1r+§i- (c7)

where A = f cos ¥ + 0 sln ¥ — y. Thus, by using equation (18), the
first term of equation (28a) for le becomes:

/2] 3fe
f <1'+D )rdr=—ﬂpﬂ93 f g(i::lQB(_ii'F:_}i)

+ ues2 M+ uee SN] (c8)

wvhere M and N eare the coefficilents of w and ue, Trespectively, in
equation (C7). The integral of equation (C8) can be evalusted in the
seme way as that of equation (C6), and the result is given by equa—
tion (32a) in the text.
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APPERDIX D

INCREMENTS IN LIFT COMPONENTS DUE TO DAMPING

From equation (9a), the total circulation (i.e., including the
velocities B eand €) will be

I = nc(\rn + Avn) (p1)

wvhere V_ is given by equation (8b), and AV~ 1s the increment In v

due to |'3 end i. This increment can be obtalned from the relation
(cf. equations (48))

) V, =1, N +my A'Vy +n AV, (p2)

vhere, for example, AV, = vxé + an. Thus, by using equations (38), (39),
and (Al0), the expression for AV, becomes:

a\'j s H H 2 o\ ¢
B 4 B 6
—=2 = (p+ o) <BE+§%>_(9_13§)§_€__*2-_>%

which to second—order smsll terms reduces to

2-9L_& (D3)
The total circulation will therefore be
I'= ncsr< 6(1 + 1) +|J.Eﬁ + ¢8) cos ¥+ (6 — BE) sin ﬂf—-a -8 %-% (Dk)

From the Kutta—Joukowskl relation (equation (Bl)), the direction
cosines (equations (Al)) of the line ¥, and the velocity increments
(equations (38) and (39)), it 1s seen that the expressions (equations (B2))

for the 1lift components per unit length must be changed by the following
increments:
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(D5)

The total 1ift components, for example the x—components, may then be

written as follows:

where I’ is given by equation (Sb),

by

to be taken from equation. (B2).

Lx‘ = pfh‘(r + AP)('Cx + AKx)

Arn—mm(eé-&é)
g

L L]
n x

X prar

(D6)

Al' (see equation (D3)) by

(D7)

By neglecting crossg products of demping

terms, the additional 1ift components can, according to equation (D6),

be written in the form

A T
' . K 2Ll
N.-x :tpﬂrc(x o + ps

)

(p8)

Thus, by the use of equations (B2), (D7), (%), and (D5), equation (D8)
leads to the results given by equations (Lla), (4lb), and (4lc) in the

text.
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APPENDIX E
DAMPING-MOMENT INCREMENT ABOUT BLADE AXTS

The following relations follow readily from flgure 6, where the
velocities (including 8s in the vector diagrem) shown are those of the
relative wind:

q
= V'2 2
V-Vcl-es % s =Vcl - 2V fs o

és CO8 QO Nés

Vcl - 68 <, Vc

A =

1

r's _ [u) 2 [
dM = dFs -é-zn(cr.o—m) dschl -~ IV 98&)8

cy (o)
Ao 2680,

= 2% o Bvcal-— - 2)s ds
°2 "1 g v
¢
& 20sa

eona BV, (1o 2)sas
62 "1 Vv o v
clo cl

Therefore

R
(Mxl)é= 't P drvcl°3

Ty

where Vc cen be taken from equation (8a), and
1
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The integration gives

M= - iﬂ'é pém2c13 % (1 + si)[Q + 8y + Tn, + Tug(sin ¥ + { cos *Zl
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APPENDIX F

DAMPING-MOMENT INCREMENTS ABOUT HINGE AXES

Increment in M 1

In order to evaluate the first term of equation (46), the increment
Avcl must first be determined, This can be easily obtained from

(cf. equation (48))

AVcl = 1 o AV, + mC:L AVy + ncl AV‘Z (r1)

The direction cosines 1, , m, ,- end n are given by equation (AT),
1

c c
1 1
and the velocitles Avx, and so forth are glven by the addition of equa—
tions (238) and (39). Thus, it is found that up to first—order small
guantities _

A'V'cl = —QOr % (F2)

(Since Cy is already first order small, it suffices to obtain AV,
ac 1

to only first orders in order to determine the first term of equation (k46)
up to second—order emall quantities.)
1
By using equation (8a) for Vc .and equation (18) for c¢ it is
1

seen that to first—order small terms

R . 1
f dr czvc &V, = - 92‘R3012 L ds =8 (52 + sp sin “’)
ry 1 1 Q 5, 1 - 8y e

= - 9233c12 % (l + si) %E (l + 21 sin ‘#‘) (¥3)

to first powers of si.

From equations (18) and (41lc) the second term of equation (46) is
seen tc be:
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R R p
f Lz'cdrn—npf?f d:r'cer2 P—(l+n+p.§cosqf+usinw)
r r Q
1 i
Q ‘El}
=—np§23302 lds 1-8 P-32+-é-As+§-Ds
1 e 1 - s /\@ Q Q

+2k 952> (FL)

+£Ee+u(3008*+951n‘¥

Q

where, temporarily, the fbllowing abbreviations for terms, not containing
the integration variable s (or r), have been introduced:

A Ene+ue(sinﬂl+ t cos ¥)
D =u, (B cos ¥+ 6 sin ¥ — 7)
The integral in equetion (FL) cen be easily eveluated, with the resulti:

R L]
B
fri AL, % dr = — ﬂp92R3c_12@_ + 6y) a:-lL-é- L+ 2y + 2ug(E cos ¥ + sin \Ir)]

+-§%E+ue(ﬁcos¢+981n\lf—‘)’ﬂ} (F6)

The third term of equation (U46), with the substitution of equa—
tion (8a) for Ve, and equation (18) for c¢ is:

. R . . 1 - 3/2
8 v, cdar =2 92R2c13 (s + &) 1-5 as  (P7)
1 e si

I‘i l_Bi

where ‘A has the pame meaning as in equation (F5).

The integral in equatlon (F7) cen be evaluated by means of the
change of varlables
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l—-s=1u, dss=qau, 8 =11, 1.1.1=1L-:s:l (¥8)
Thus, . .
. R . 3/2
ef Vcc3d.r=2- a°g°, 3.[ (L + A =u) du
7y 1 Q 0 3/2

=%9232 3[5 (1 +8)(2 - 5) —-(1—231)]
=% 2R2°:i.3_(1+ s)[2+ s, + 7(1-231)"13

+ 7(1 - zsj)”e (sin ¥ + ¢ cos Wﬂ ] (F9)

By putting equations (F3), (¥F6), and (F9) into equation (46), the result for
the damping moment AMx-L a8 glven by equation (49) of the text is obtained.

Demping Moment AMyl

Putting equation (4lc) into equation (L47) shows the expression for the
moment Myl to be:

R Y I RM

+ 83 +2L> (Fr10)

where A and D are given by equations (F5). The integrals in equation (F10)
cen be evaluated by means of the change of variables (equation (F8)), with
the results:
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1 1/2
ds [ L =8_ e = 16 l+-J&si)
8y 1l-~8y 105 2

1 _ /2
ds = 2 s3= §-2— l + -]és:')
8, l-8 315 2

i

The use in eguation (F10) of these values leads to the expression (equa—

tion (50)) for the demping moment AMyl given in the text.

Damping Moment Ale
According to eguation (48e) ,

R R
= t 8
AMZl'fr ALyrdr+‘[,r ADyrd.r (F11)
1 1

From the expressions for ALy' (equation (41b) and for c¢ (equation (18))
the first term of equation (F1ll) i1s seen to be

R 1 1/2 . ‘
AL %y 4y = - n'pﬁthc f l1-s de EE53 + sap. (2B cos ¥
b4 1 Q (<)
ri By lews

i

+ 6 sin ¥V - '7):‘ (F12)

With the preceding values of the integrals, equation (F12) becomes:

R : .
B{32 16
AL'rdr=—n:QERh'c@+-]=s wle——— 8 + ——pu_(2B com ¥ + 8 gin ¥ = 29)
L[;i PR * 3% 5315 ° * Top e 7

(F13)

From the expression (equation (44)) for ADy', the second term of
equation (Fll) is seen to be

R R B— uo+ 8
f AD_tr ar = f dr |a + 1.® (1 ) 2.3 é

¥ = + K 8in ¥)reppcr’ £ (Flh
r
i T2 P D51 4+usiny Pl Q
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where D 1is glven by equation (F5). Substituting equation (18) for e,
integrals similer to those in equation (Fr12) eppear, and the result 1is:

R .
ry Y Q3151 P 5

+ 3HGE‘P gin ¥ + -;L(B cos V+ 6 sin ¥ —__-;E‘ (F15)

By adding equations (F13) and (F15), the expression (equation (51)) for the
damping moment Ale is obtained.
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APPENDYX G

PHYSICAL CONSTANTS OF BIADE SYSTEM

General Assumptions

The following 1s a summery of the data assumed in this report for the
purpose of numerical calculation:

Ty
W = k000 1b 8, S —==0,2
i1 R
R =25f%t tb 1
—- = Constant along span:of blade = =
Q = 20 radlans/sec ¢ 8
o n = b4 blades
n, === 0,05
e R ; %.. 0.0025
1/2 -
R —
¢ =c = o = 0,020
1.1
R 6

Moments of Inertia

Bocause the pltch angle, with the foregoing data, will be guite small
(6o = 0.0306, equation (103)) it will be sufficlently asccuraste, for the
purposes of calculating the moments of inertie, to neglect the rotation
of axes due to the angle @&. . )

In general, for a blade,
= = = = 3
:1(_ Im) = £,03 I, <_ I m) = £,t,3c (G1)

where fl and. f2 are constants, which for a solid Clark Y section have
the values

£, = 0.0418, f, = 0,0454
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From equation (Gl),

2RI O R

Neglect, for simplicity, of I in comparison wi'bh I will therefore

be Justified., Similarly, moreover, Iin accord.ance wi'bh the definitions in

equations (61), the moment of inertia I,y may be neglected in comparison

with I... It follows then, because for an airfoll sectlon such as

Clark Y, Il and Izs will be practically the same, that

= 2 2 o~ ~ -
IP-ers+zs)dA~Il+Ie~Il I~ I,
Therefore, with the notetions in equations (61),

Ierlzz.IstI ) - (e3)

The numerical value of I ocen be readily determinsd by using equation (G1).
Thus

R £ R £ R
f 'flc?’tbdr---s-]-i ot ar = 1 zci“f (R — r)° ar

Ty ry 8(R —- ri) r,

I

—— Rcil'(l - si> (G4)

The value of I, by definition, will be

R

Eﬂ=f Ar? ar (G5)
r
1 _

where the cross—sectional area A may be given by

= thC (G.6)
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and f3 is & constant, which for a solld Clark Y section has the value

f3 = 0,725

R f R
Iﬁnf f tbcrad.r=—3 cer2
3 ry 8 ri

£ R, (r=R) £5 (1+s)
=_c12j (=, -7 o = g Boy”

Hence

f l+s
8 .
From equations (G%) and (GT),

e \3 3
!-l-fl<l —'230 <R-—i'> = 24k X 0,0418 x 0,6 X (%) = 0.00386 (G8)

Therefore I mey be considered negligible in comparison with 'I'E

MHI|Hl

From equetion (G7), it follows that

Rtc, = 576 G -8)Tz =

S = (- o)
= 796 (1 - Bi)-fH (G9)

The value of E is, by definltion,

- R '
S = Ar ar (G10)
Ty
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Putting equation (G6) into equation (GLO) shows the value of ¥ to be:

(l + 31)

§=E—R3 (G11)
Comparison of equations (G7) end (Gll) shows that
S = gili Gl
= (c12)

Thus all the relations in equations (77) of the text have been derived.
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APPENDIX E
EXPLICTT DERIVATION OF OSCILIATIONS IN CASE C

By pubtting eguation (126) into equations (97a), (97b}, and (97c),
the expressions for the P%s, In accordance with the definitions
(equation (128)), are found to be the following:

Plb=p2f+Ep—J, Plfn—p2§c1'zs h
Pld=p2'ﬂc'fE+pM+§5%i—5-Q.+gqe)
P2‘b=P2§chs+§_i; l"'%si %5
P2f=—psz—IH(l+2ne)—p%2-%%é.+%_qe> >
Pq = P2 6,I, P3b=-p2 acxﬁ+%%6p+§ec
Po=1°0,T == (1430, g;(—;ﬁ o = %P

v
A
n
|
)
ol
1
QQ
e
\.

whare
2
E= E_ (l+si) 3.)3.(2+s + i)
92 12 R 35 i e
J_E é."'si) Cif _I_
‘Qe 12 R 12
E (l+s c c
P ) (0 %
I} 12 R Mgc | "R

(1)
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Equation (130b) therefore becomes:
E 1
- — 1 4 me (1 + =8
p%+Hp J+)\.92 <+2‘q> 315 21)

+”pM+_i§_5(°P Zoq)| - [IE+ 92315( Fo) + Iﬂ(l+2n):‘
2( +2neT-E>+MEpaeI--(1+ >315 = 8, )]

or, rearranging in-powers of p and dividing through by -fH’ glves

(l+s

E
P2 -7‘2—”'2"'—"'2)"”90; + pl—™+u IL.i-+2’¢i-——2—__-- mp+-§-ec>
IH I % IE 355'7.1H
(l+s + 27 c T
+h =3 ie efRi )'22—-3'5_6 %"5
QETH QIH35

M 315< -e’X; °'°°P>
+ ;_—H-—k26+2ne)+xli- é+—s> Enu:l= (22)

o® 315

Equation (H2) is equivalent to equation (131) of the text, when

'5‘3_—- + 2ML 6 c E—- has been teken as nsegligible In comparison with

¢! =

62 . u2)

Equation (H2) is most easily handled by using numericel values
immediately. With the numericel dats consistently assumed in this report
(see sppendix G) and with the use of equations (77), the following values
are obtained, in accordsnce with the ebbreviations in eguation (131):
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E32 - 7\.-—-(1, -ge N
92- 315 -P P 5¢

1 32
315

QID

= 7

<11xoooh5x-ooeo-—x00301>
Iy 5

311+><oooa5><796><08x315 (0.00495) — 0.032)

0 002527~. - 0.0163

l+8 Rc
§.=_n§< i) <x015x00306— °6>
I 6n
=—3.lhx9—<i)-22-2x796x08x000165=..oooo69
H 796 X 0,8 2
— = 3,14 X 0,0025 X L&mmieets X x—-x255=000168
fH 12 36 35
._J=.=3.1hxo.ooe5x796xo‘8xlx 0.15 —~ 0,00386 = 0.00656
T 12 6 _ .
E 32 32
—_— = 3.1h X 0.0025 X 796 X 0.8 X = X 1.075 = 0.548
@%315 —*1) 79 315 75 5k

1+ 08, +2q c
( 1 e)fR—i-=3.1hx0.0025x796x0.8x%-1-§-x0.15x3g-0.0136
. 2

na’rﬁ 12

Substitution of the foregoing numerical values into equation (H2), the
chenging of all signs there, and neglect of the quantity

£- + 2M18, I— in comperigon wilth (). + p.2> leads to the following

I T

equation:
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p2<k.2 + l-t2> + p(0.0025201 — 0.0163n + 0.00069: — 0,00168
+ 0.598.2 — 0.0136))

+ (0.00656 + 1.122 + 0,14 — 0.5600) = O (53)

This equation is equivalent to equation (132) of the text.
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